18.034, Honors Differential Equations Prof. Jason Starr

Lecture 30: Notes for Kiran: I. Summary of Lecture 29 4/21/04

We finished last time with Jordan normal form.

<u>Notation</u>(: *i*) ∇ a finite dimensional \mathbb{C} -vector space (usually $\nabla = \mathbb{C}^n$ with standard basis e_1, \ldots, e_n).

- (ii) $T = V \rightarrow V$ a linear operator
- (iii) A linear system of differential equations

$$y' = Ty$$

i.e. looking for differentiable $y = \mathbb{R} \rightarrow \mathbb{V}$ s.t.

$$y'(t) = T(y(t)).$$

(iv) matrix of T w.r.t. an ordered basis $B = (v_1, \ldots, v_n)$, $A = [T]_{B,B,B}$

$$Tv_j = \sum_{i=1}^n A_{ij} \cdot v_i.$$

- (v) char. polynomial $p_T(\lambda) = \det(\lambda I d_{\sqrt{r}} T) = \lambda^n T_r(T)\lambda + \dots$
- (vi) factorization $p_{\tau}(\lambda) = (\lambda \lambda_1)^{m_1} \dots (\lambda \lambda_t)^{m_t}$.
- (vii) for each i = 1, ..., t, the generalized eigenspaces,

$$\nabla_{\lambda i}^{(r)} = K_{es}(T - \lambda_i Id)^r$$
,

 $\mathbf{V}_{\lambda i} = \mathbf{V}_{\lambda i}^{(1)} \ C \quad \mathbf{V}_{\lambda i}^{(2)} \ C \dots \quad C \ \mathbf{V}_{\lambda i}^{(m_i)} = \mathbf{V}_{\lambda i}^{gen} \leftarrow \text{generalized eigenspace}.$

- (viii) restriction of T to $V_{\lambda i}^{gen}$ is T_i .
- (ix) $N_i = T_i \lambda_i I d \nabla_{\lambda_i}^{gen}$.
- (x) Jordan normal form of N_i : we saw that there is a sequence of lin. ind. sets of vectors $B_{(e,1)}, \ldots, B_{(e,a_e)}, \ldots, B_{(r,1)}, \ldots, B_{(r,a_r)}, \ldots, B_{(1,1)}, \ldots, B_{(1,a_1)}$ (of course not every integer r has to occur above)

such that $B_{\lambda i} = B_{(e,1)} u.....u$ $B_{(1,a_r)}$ is an ordered basis for $\nabla_{\lambda i}^{gen}$ with respect to which we have

Gave usual method for finding the sets $B_{(r,j)}$:

First choose a maximal lin. ind. set of vectors $v_{(r,1)}$,....., $v_{(r,a_r)}$ contained in

$$\mathbf{V}_{\lambda i}^{(r)}$$
 - ($N_i \mathbf{V}_{\lambda i}^{(r+1)} \, \mathsf{U} \, \mathbf{V}_{\lambda i}^{(r-1)}$) and define

$$B_{(r,j)} = (N_i^r \ V_{(r,j)}, \ N_i^{r-1} \ V_{(r,j)}, \dots, \ N_i \ V_{(r,j)}, \ V_{(r,j)}).$$

(xi) The Jordan normal form of T_i w.r.t B is

(xii) Restrict T to the subspace $\overline{\mathbb{W}}_{(r,j)}$ spaced by $B_{(r,j)}$. Represent el'ts w.r.t basis

$$B_{(r,j)}$$
 as $z = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_r \end{bmatrix}$. Then $z' = T_z$ is just

$$\begin{cases}
z'_1 = \lambda \ z_1 + z_2 \\
z'_2 = \lambda \ z_2 + z_3 \\
\vdots \\
z'_{r-1} = \lambda \ z_{r-1} + z_r \\
z'_r = \lambda \ z_r
\end{cases}$$

(xiii) The solution space of $z' = T_z$ has a basis

(xiv) In computing the Jordan normal form, we also find the matrix

 $\mathit{U} = [\mathit{Id}_{\mathbf{Y}}]_{\mathit{B}^{\mathit{Old}},\mathit{B}^{\mathit{New}}}$, i.e. for the j^{th} basis vector v_j in the new basis,

$$v_j = \sum_{i=1}^n u_{ij} e_i$$
 , where $(e_1,, e_n)$ is the original basis.

(xv) For each vector from (xiii) extend the column vector by zesos to get a solution $z^{(r,j,e)}$ of $z' = [T]_{B^{new},B^{new}z}$.

The corresponding solution of the linear system w.r.t. the original basis is

$$y_{(r,j,l)} = Uz_{(r,j,l)}$$

II. Lecture 30, part 1 ≈ (30 mins)

10mins A. An example with recil eigenvalues.

$$y' = Ay$$
, $A = \begin{bmatrix} 6 & -4 & 1 \\ 4 & -2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$ $B = (e_1, e_2, e_3)$

 $P_A(\lambda) = (\lambda - 2)^3$. So one eigenvalue $\lambda = 2$ w/multiplicity 3.

$$[N]_{B,B} = A - 2I = \begin{bmatrix} 4 & -4 & 1 \\ 4 & -4 & 3 \\ 0 & 0 & 0 \end{bmatrix},$$

$$[N^2]_{B,B} = (A - 2I)^2 = \begin{bmatrix} 0 & 0 & -8 \\ 0 & 0 & -8 \\ 0 & 0 & 0 \end{bmatrix}, [N^3]_{B,B} = 0 \text{ matrix}$$

$$\mathbf{V}_{2}^{(1)} = K_{er}(N) = S_{pn} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{V}_{2}^{(2)} = S_{pn} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{V}_{2}^{(3)} = \mathbf{V} .$$

Choose $v_{(3,1)} = e_3$. Then $B = B_{(3,1)} = (N^2 e_3, Ne_3, e_3)$

$$= \left(\begin{bmatrix} -8 \\ -8 \\ 0 \end{bmatrix} \right)^{N}_{G} \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}^{N}_{G} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) \qquad U = \begin{bmatrix} -8 & 1 & 0 \\ -8 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$[N]_{B',B'} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad [T]_{B',B'} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

w.r.t. B' a basis for the solution space is

$$Z_{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} e^{2t} , Z_{(2)} = \begin{bmatrix} t \\ 1 \\ 0 \end{bmatrix} e^{2t} , Z_{(3)} = \begin{bmatrix} t^2/2 \\ t \\ 1 \end{bmatrix} e^{2t}$$

w.r.t original basis B, a basis for the solution space is

$$y_{(1)} = Uz_{(1)} = \begin{bmatrix} -8 \\ -8 \\ 0 \end{bmatrix} e^{2t} , y_{(2)} = Uz_{(2)} = \begin{bmatrix} -8t+1 \\ -8t+3 \\ 0 \end{bmatrix} e^{2t} , y_{(3)} = Uz_{(3)} = \begin{bmatrix} -4t^2+t \\ -4t^2+3t \\ 1 \end{bmatrix} e^{2t}$$

So the general real solution of y' = Ay is

$$y = C_1 \begin{bmatrix} -8 \\ -8 \\ 0 \end{bmatrix} e^{2t} + C_2 \begin{bmatrix} -8t+1 \\ -8t+3 \\ 0 \end{bmatrix} e^{2t} + C_3 \begin{bmatrix} -4t^2+t \\ -4t^2+3t \\ 1 \end{bmatrix} e^{2t}$$

5 mins B. What if some eigenvalues are complex:

Answer: Go through the same process as before to get $y_{(r,j,l)} = Uz_{(r,j,l)}$. Then take the real and imaginary parts of $y_{(r,j,l)}$. You only need to do this for one of the two complex conjugate eigenvalues in each conjugate eigenvalue pair.

: It is <u>not</u> okay to take the real and imaginary parts of $z_{(r,j,l)}$!

The matrix U will have complex entries, and you need to first compute $z_{(r,j,l)}$.

10 mins-15 mins C. An example with complex eigen values

$$V = \mathbb{C}^4$$
 , $B = (e_1, e_2, e_3, e_4)$. $T = T_A$,

$$A = \begin{bmatrix} 2 & 1 & -1 & 3 \\ -1 & 2 & 0 & -2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -1 & 2 \end{bmatrix}, P_A(\lambda) = ((\lambda - 2)^2 + 1)^2$$

$$\frac{\lambda_t = 2 + i, \lambda_- = 2 - i}{\lambda_t = 2 + i, \lambda_- = 2 - i}$$

$$\lambda_{t} : [N_{t}]_{B,B} = A - \lambda_{t}I = \begin{bmatrix} -i & 1 & -1 & 3 \\ -1 & -i & 0 & -2 \\ 0 & 0 & -i & 1 \\ 0 & 0 & -1 & -i \end{bmatrix},$$

$$[N_t^2]_{B,B} = \begin{bmatrix} -i & 1 & -3+2i & -3-6i \\ -1 & -i & 3 & -3+4i \\ 0 & 0 & -i & 1 \\ 0 & 0 & -1 & -i \end{bmatrix}$$

The matrix $\left[N_t^2\right]_{B,\,B}$ is row equivalent to

$$\begin{bmatrix} 1 & i & 0 & -3-i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & i \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \text{So } \mathbf{V}_{\lambda t}^{(1)} = S_{pn} \begin{bmatrix} 1 \\ i \\ 0 \\ 0 \end{bmatrix},$$

$$\nabla_{\lambda_t}^{(2)} = S_{pn} \begin{bmatrix} 1 \\ i \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3-i \\ 0 \\ i \\ -1 \end{bmatrix}.$$

Choose
$$V_{(2,1)} = \begin{bmatrix} 3-i \\ 0 \\ i \\ -1 \end{bmatrix}$$
, $B_{(2,1)} = \begin{bmatrix} -4-4i \\ 4-4i \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} N \\ G \\ i \\ -1 \end{bmatrix}$.

With respect to this lin ind. set, T has matrix $\begin{bmatrix} 2+i & 1 \\ 0 & 2+i \end{bmatrix}$.

So the solution space for λ has a basis

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{2t} e^{it} , \begin{bmatrix} t \\ 0 \end{bmatrix} e^{2t} e^{it}$$

So
$$y_{(2,1,1)} = \begin{bmatrix} -4-4i \\ 4-4i \\ 0 \\ 0 \end{bmatrix} e^{2t}e^{it} = e^{2t} \begin{bmatrix} -4\cos(t)+4\sin(t) \\ 4\cos(t)+4\sin(t) \\ 0 \\ 0 \end{bmatrix} + i e^{2t} \begin{bmatrix} -4\cos(t)-4\sin(t) \\ -4\cos(t)+4\sin(t) \\ 0 \\ 0 \end{bmatrix}.$$

And
$$y_{(2,1,2)} = \begin{bmatrix} 3 - i + t(-4 - 4i) \\ t(4 - 4i) \\ i \end{bmatrix} e^{2t} e^{it}$$

$$y_{(2,1,2)} = e^{2t} \begin{bmatrix} t(-4\cos(t) + 4\sin(t)) + 3\cos(t) + \sin(t) \\ t(4\cos(t) + 4\sin(t)) \\ -\sin(t) \\ -\cos(t) \end{bmatrix}$$

$$+i e^{2t} \begin{bmatrix} t(-4\cos(t) - 4\sin(t)) - \cos(t) + 3\sin(t) \\ t(-4\cos(t) + 4\sin(t)) \\ \cos(t) \\ -\sin(t) \end{bmatrix}$$

So a basis for the solution space is

$$y_{(1)} = \begin{bmatrix} -4\cos(t) + 4\sin(t) \\ 4\cos(t) + 4\sin(t) \\ 0 \\ 0 \end{bmatrix} e^{2t} , \quad y_{(2)} = \begin{bmatrix} -4\cos(t) - 4\sin(t) \\ -4\cos(t) + 4\sin(t) \\ 0 \\ 0 \end{bmatrix} e^{2t}$$

$$y_{(3)} = \begin{bmatrix} t(-4\cos(t) + 4\sin(t)) + 3\cos(t) + \sin(t) \\ t(4\cos(t) + 4\sin(t)) \\ -\sin(t) \\ -\cos(t) \end{bmatrix} e^{2t},$$

$$y_{(4)} = \begin{bmatrix} t(-4\cos(t) - 4\sin(t)) - \cos(t) + 3\sin(t) \\ t(-4\cos(t) + 4\sin(t)) \\ \sin(t) \\ -\cos(t) \end{bmatrix} e^{2t}$$

III. Lecture 30, part 2 (≈20 min's)

Discuss the matrix exponential and its use to solve inhomogeneous linear systems with constant coeffs: § 6,6 of Borelli + Coleman.

Of course, the books definition of the matrix exponential is ridiculous. Also, both for finding solutions of inhomog. systems <u>and</u> for solving IVP's, it is better to go through the process above and then compute the matrix $U^{-1} = [Id]_{B^{new}}$ gold.

Then for an IVP
$$\begin{cases} y' = Ay + f & \text{, we get} \\ y(0) = y_0 \end{cases}$$

the transformed IVP

$$\begin{cases} z' = U^{-1}AUz + U^{-1}f \\ z(0) = z_0 = U^{-1}y_0 \end{cases}$$

Because $B = U^{-1}AU$ is in Jordan normal form, it is usually simpler to solve this directly than to compute the matrix exponential.