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1. Discussed the approach to the Green’s Kernel via the Laplace operator. Let p(D) be a 
constant coeff. linear differential operator of order n+1 and let f(t) be a function of 
exponential type. Let y(t),  be the solution of the IVP 0t ≥
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2. Worked the IVP  by Green’s Kernel method 2ttef(t)y2y'y” ==++
1  y(0) =  
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And saw it involved more computation than the usual Laplace operator method (which 
we did in lecture on Monday). 
 

3. Very quickly reviewed what a system of linear ODE’s is , introduced matrix notation for 
such a system, 

F(t)  Ay y' +=   
 and argued that a formal solution should be of the form 

  , once we make sense of all this. ∫ −⋅+⋅=
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