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18.034 SOLUTIONS TO PRACTICE EXAM 2, SPRING 2004 

Problem 1 Let r be a positive real number. Consider the 2nd order, linear differential equation, 

3 2r 3 
y�� − r + y� + + 

t2 
y = 0, 

t t 

where y(t) is a function on (0,∞). One solution of this equation is y1(t) = tert . Use Wronskian 
reduction of order to find a second solution y2(t). 

Solution For the Wronskian W [y1, y2](t) = y1(t)y� 1(t)y2(t), differentiating gives, 2(t)− y�

3 
W � = −a(t)W = r + W. 

t 

This is a separable equation whose solution is, 

ln(W ) = rt + 3 ln(t) + C, 

in other words, 
rt W (t) = At3 e . 

Without loss of generality, take A = 1. 

By definition v = y2(t) is a solution of the following 1st order ODE, 
rt rt 3te v� − (rt + 1)e v = t e rt . 

Putting this in normal form, 
1 2 v� + (−r − )v = t . 
t

An integrating factor for this equation is, 

1u(t) = exp t
t 

0
(−r − s )ds 

= exp [−rt − ln(t) + B] 
e−rt = Ct−1 , 

where C is a constant. Set C = 1. 

The integrating factor reduces the ODE to, 

e−rt t−1 v 
� = te−rt . 

Integrating by parts, the antiderivative of te−rt is, 
1 

te−rtdt = − 
r2 

(rt + 1)e−rt + E. 

Hence, 
1 

t−1 e−rt v = − 
r2 

(rt + 1)e−rt + E. 

One solution is, 
1 

v(t) = − 
r
t(rt + 1).
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Of course any multiple of this solution also leads to a basic solution set. Therefore a basic solution

set of the ODE,


3 2r 3 
y�� − r + y + + y =
0, 

t2t t 

is the pair, 
rt y1(t) = te , y2(t) = t(rt + 1). 

Problem 2 An undamped harmonic oscillator satisfies the ODE, 

y�� + ω2 y = 0. 

Let y(t) be a solution of this ODE for t < τ . At some time τ > 0, the oscillator is given an impulse 
of size v > 0. In other words, if


limt τ− y(t) = y0, 
limt

→
τ− y�(t) = v0 →

then for t > τ , y(t) is a solution of the IVP, ⎧⎨ y�� + ω2y = 0, 
y(τ) = y0, 
y�(τ) = v0 + v ⎩


(a) Write y(t) in normal form A cos(ωt − φ) for t < τ , and in normal form y(t) = B cos(ωt − ψ) for 
t > τ . Find an equation expressing B2 in terms of A2 , v0 and v. 

Solution For a function z(t) in the form C cos(ωt − θ), the derivative is z�(t) = −ωC sin(ωt − θ). 
In particular, 

(ωz)2 + (z�)2 = ω2C2 cos2(ωt − θ) + ω2C2 sin2(ωt − θ) = ω2C2 . 

In particular, 
ω2B2 = (ωy(τ))2 + (y�(τ))2 

2= (ωy0)2 + (v0 + v)2 = (ωy0)2 + v2 + 2v0v + v0 
2= ω2A2 + 2v0v + v . 

This gives the formula, 
1 

B2 = A2 + 2 v0v +
1 
v 2 . 

ω2 ω2 

(b) If the goal of the impulse is to maximize the amplitude B, at what moment τ in the cycle of the 
oscillator should the impulse be applied? If the goal is minimize the amplitude B, at what moment 
τ should the impulse be applied? 

Solution Maximizing B is the same as maximizing B2. In the equation above, A2 , ω and v are the 
same for all values of τ . The only quantity that varies is v0. To maximize B2, the impulse should be 
applied when v0 is as large as possible, at the moment when y0 = 0 and y�(t) > 0. In other words, 
when 

1 
ωτ − φ = (2n − 1/2)π, τ = (φ+ (2n − 1/2)π). 

ω
Similarly, to minimize B, the impulse should be applied when v0 is as negative as possible, at the 
moment when y0 = 0 and y�(t) < 0. In other words, when 

1 
ωτ − φ = (2n + 1/2)π, τ = (φ+ (2n + 1/2)π). 

ω

Problem 3 Consider the following constant coefficient linear ODE, 

y��� + y = 0. 

(a) Find the characteristic polynomial and find all real and complex roots. 
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Solution The characteristic polynomial is, 

p(z) = z 3 + 1. 

One evident root is z = −1. Factoring this out gives, 
2 z 3 + 1 = (z + 1)(z − z + 1). 

By the quadratic formula, the two roots of z2 − z + 1 are the complex conjugates, 

λ = 1/2± i
√

3/2.± 

(b) Find the general real­valued solution of the ODE. 

Solution Associated to the root −1 is the real­valued solution e−t . Associated to the complex 
conjugates λ± are the two real solutions, 

et/2 cos(
√

3t/2), et/2 sin(
√

3t/2). 

Therefore the general real­valued solution is, 

yg(t) = C1e
−t + C2e

t/2 cos(
√

3t/2) + C3e
t/2 sin(

√
3t/2). 

(c) Find a particular solution of the driven ODE, 

y��� + y = cos(
√

3t/2). 

Solution A particular solution is the real part of the complex­valued solution of the driven complex 
ODE, 

y���� + y�= e i
√

3t/2 . 

Because i
√

3 is not a root of the characteristic polynomial, we guess the solution is of the form, 2 

Aei
√

3t/2 y�= . 

Substituting this into the ODE gives, 
i
√

3t/2(i
√

3/2)3Aei
√

3t/2 + Aei
√

3t/2 = e . 

Simplifying gives, 
A(1 − 3

√
3i/8) = 1, 

i.e., 
1 
A(8 − 3

√
3i) = 1.

8
Multiplying both sides by the complex conjugate 8 + 3

√
3i gives, 

1 
A(64 − 27) = (8 + 3

√
3i),

8
i.e. 

8 
A = 

37
(8 + 3

√
3i). 

So the real part of y�(t) is, 
8 

yd(t) = 
37

(8 cos(
√

3t/2) − 3
√

3 sin(
√

3t/2)). 

Problem 4 The linear ODE, 
y�� + (t − 3/t)y� − 2y = 0, 

has a basic solution pair y1(t) = e−t2/2 , y2(t) = t2 − 2. 

(a) Find the Wronskian W [y1, y2](t). 
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Solution Computing the derivatives, 

y1(t) = e−t2/2 , y2(t) = t2 − 2, 
y1(t) = −te−t2/2 , y2(t) = 2t. 

So the Wronskian is, 
22te−t2/2 − (−t)(t − 2)e−t2/2 = t3 e−t2/2 . 

(b) Use variation of parameters to find a particular solution of the driven ODE, 
4 y�� + (t − 3/t)y� − 2y = t . 

Solution By variation of parameters, a particular solution of Ly = f(t) is, 
t 

yd(t) = K(t, s)f(s)ds, 
t0 

where, 
K(t, s) = (y1(s)y2(t)− y1(t)y2(s))/W [y1, y2](s). 

3e−s2/2By (a), W (s) = s . Therefore, 

K(t, s) = (e−s2/2(t2 − 2) − e−t2/2(s 2 − 2))/(s 3 e−s2/2). 

Simplifying, this is, � �
21 2 s2/2K(t, s) = 

3 
(t − 2) − e−t2/2 s − 2 

e .
3s s

Multiplying by s4 yields, 
4 2 3 s2/2K(t, s)s = (t − 2)s − e−t2/2(s − 2s)e . 

The antiderivative of the first term is, 
t 

2 1 2 2 2(t − 2)sds =
2
(t − t0)(t − 2). 

t0 

To antidifferentiate the second term, substitute u = s2/2, du = sds to get, � t2/2 

−e−t2/2(u − 2)e udu. 
t2 0/2 

Integrating by parts, this is, � t2/2 

0/2 
−e−t2/2(u − 2)eudu = 

t2 

t2/2u�−e−t2/2 ((u − 3)e | 
0/2 

= �t2 

1 t2/2
2(t2 0/2−e−t2/2

2(t2 − 6)e − 1 0 − 6)et
2 

= 
1 0/2e−t2/2 

2(t2− 2(t2 − 6) + 1 0 − 6)et
2 

. 

Putting the pieces together and plugging in t0 = 0 gives, 
1 4 yd(t) =
2
(t − 3t2 + 6) − 3e−t2/2 . 

It is straightforward to check this is a solution. 

Problem 5 Recall that PCR(0, 1] is the set of all piecewise continuous real­valued functions on the 
interval (0, 1]. The inner product on this set is, � 1 

�f, g� = f(t)g(t)dt. 
0 
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Define f0(t) = 1. For each integer n ≥ 1, define fn(t) to be the piecewise continuous function whose 
2 3value on (0, 1 ] is −1, whose value on ( 2

1 
n , 2n ] is +1, whose value on ( 2 ] is −1, whose value on 2n 2n , 2n


3
(2n , 
4 ] is +1, etc. In other words, 2n ⎧ ⎨ −1, 2k−2 < t ≤ 2k−2 for k = 1, . . . , 2n−1 ,2n 2n 

fn(t) = ⎩ +1, 2k−1 < t ≤ 2k for k = 1, . . . , 2n−1 .2n 2n 

(a) Compute the integrals �fm, fn� and use this to prove that (f0, f1, . . . ) is an orthonormal sequence. 
(Hint: If n > m, consider the integral of fn over one of the subintervals ( a a+1 ]. What fraction 
of the time is fn positive and what fraction of the time is it negative?) 

2m , 2m 

Solution First of all, for every n, (fn(t))2 is the constant function 1. Therefore �fn, fn� = 1. 
Suppose that n > m. Then the integral �fn, fm� is the sum over all integers a = 0, . . . , 2m − 1 of the 
integral, � (a+1)/2m 

n(t)dt.±f
a/2m 

Of course the interval ( a a+1 ] is a union of 2n−m intervals ( 2
b 
n , 

b+1 ]. On half of these intervals, 
fn(t) has the constant value −1. On the other half, fn(t) has the constant value +1. Therefore the 

a+1 

2m , 2m 2n 

net integral of fn(t) over ( a 
2m , 2m ] is 0. Since this holds for each a, 

�fn, fm� = 0. 

Therefore the sequence (f0, f1, . . . ) is an orthonormal sequence. 

(b) Compute the generalized Fourier coefficient, � 1 

�t, fn(t)� = tfn(t)dt. 
0


1
Prove it equals 
2n+1 . This gives the generalized Fourier series, � 1 

t = fn(t). 
∞

2n+1 
n=0 

Solution Of course for n = 0, �t, f0(t)� is just the integral of t, which is 1 
2 . Suppose that n > 0. By 

definition, 
2n−1�� (2k−1)/2n � 2k/2n 

�t, fn(t)� = t(−1)dt+ t(+1)dt . 
k=1 (2k−2)/2n (2k−1)/2n 

Integrating, this is, 
2n−1

2 2
�� 

− 
� 
t /2��(2k−1)/2n 

+ 
� 
t /2�2k/2n 

.
(2k−2)/2n (2k−1)/2n 

k=1 

The term in parentheses simplifies to, 

− 1 (2k − 1)2/22n − (2k − 2)2/22n + 1 (2k)2/22n − (2k − 1)2/22n = 2 � 2 �
1 

22n+1 (2k)2 − 2(2k − 1)2 + (2k − 2)2 = 
1 

22n+1 4k2 − 2(4k2 − 4k + 1) + (4k2 − 8k + 4) = 
1 

22n+1 4k2 − 8k2 + 8k − 2 + 4k2 − 8k + 4 = 
1 

22n . 

Summing over all k gives 2n−1 × (1/22n) = 1/2n+1. Therefore the generalized Fourier coefficient is, 
1 �t, fn(t)� = 

2n+1 
. 
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This gives the generalized Fourier series, � 1 
t = fn(t). 

∞

2n+1 
n=0 

(c) Rewrite the series above as, 
∞� 1 1 + fn(t)

t = .
2n 2 

n=1 

What is the relationship of this equation to the binary expansion of the real number t? 

Solution We can rewrite the equation because, � 11 1 ∞

2
f0 = 2

= 
2n+1 

. 
n=1 

Now 1 + fn(t) equals 0 iff the nth digit in the binary expansion of t equals 0. And 1 + fn(t) equals 
th2 iff the nth digit in the binary expansion of t equals 1. Therefore (1 + fn(t))/2 is precisely the n

digit in the binary expansion of t. Therefore the formula above precisely says that t is equal to the 
series arising from the binary expansion of t. 

6 


