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18.034 SOLUTIONS TO PROBLEM SET 9 

Due date: Friday, April 30 in lecture. Late work will be accepted only with a medical note or for 
another Institute­approved reason. You are strongly encouraged to work with others, but the final 
write­up should be entirely your own and based on your own understanding. 

Each of the following problems is from the textbook. The point value of the problem is next to the 
problem. 

(1)(5 points) p. 403, Problem 5 
Solution: The trace is Trace(A) = 6, and the determinant is det(A) = 2·4−(−1)1 = 9. Therefore 

the characteristic polynomial is, 

pA(λ) = λ2 − Trace(A)λ + det(A) = λ2 − 6λ + 9 = (λ − 3)2 . 

Therefore there is one eigenvalue λ = 3 with multiplicity 2. Because the matrix is not diagonal, the 
eigenspace is deficient. Therefore there is a generalized eigenvector. The matrix A − 3I is, 

−1 1 
A − 3I = −1 1 . 

A generalized eigenvector is, � � 
1 

v2 = ,0 
and the corresponding vector v1 = (A − 3I)v2 is, 

−1 
v1 = −1 . 

The change­of­basis matrix is, � � 

U = [v1|v2] = −1 1 
. −1 0 

Then AU = UD where D is the matrix in Jordan canonical form, 

3 1 
D = 0 3 . 

Therefore, 
exp(tA)U = U exp(tD). 

The solution space of the system, 
z�(t) = Dz(t), 

has basis, � � � � 
3tz1(t) = 1 

e , z2(t) = 1 
t

e 3t .0 
Therefore the basic solution matrix is, 

Z(t) = [z1(t)|z2(t)] = 1 t
e 3t .0 1 

Of course Z(0) = I, therefore exp(tD) = Z(t). Therefore, 

exp(tA) = U exp(tD)U−1 . 
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By Cramer’s rule,	 � � � � 

U−1 = (1/det(U)) 0 −1 = 0 −1 
.1 −1 1 −1 

Therefore,	 � � � � � � 
−1 1 1 t 3t 0 −1exp(tA) = −1 0	 1 −1 .0 1 e 

Simplifying, this gives, 
3t te3t(−t + 1)e3t =exp(tA) = −t + 1 t	

.3t−t t + 1 e −te3t (t + 1)e

To double­check, observe the derivative is, 
3td (−3t + 2)e3t (3t + 1)e

.3tdt 
exp(tA) = (−3t − 1)e3t (3t + 4)e

This is the same as, 
3t te3t2 1 (−t + 1)e

3t−1 4 −te3t (t + 1)e = A exp(tA). 

And exp(0A) = I. 

(2)(5 points) p. 403, Problem 11 

Solution: This is one of the very few situations where the power series definition of the matrix 
exponential is useful. Observe that, ⎡ ⎤⎡ ⎤ ⎡ ⎤ 

0 0 0 0 0 0 0 0 0 
A2 = ⎣ 2 0 0 ⎦⎣ 2 0 0 ⎦ = ⎣ 0 0 0 ⎦ , 

3 4 0 3 4 0 8 0 0 

and,	 ⎡ ⎤⎡ ⎤ 
0 0 0 0 0 0


A3 = ⎣ 2 0 0 ⎦⎣ 0 0 0 ⎦ = 0.

3 4 0 8 0 0


Therefore An = 0 for n ≥ 3. So the power series, � tn 

exp(tA) = An , 
∞

n!
n=0 

reduces to, ⎡ ⎤ 
1 0 0 1

exp(tA) = I + t + t2A2 = ⎣ 2t 1 0 ⎦ .
2 4t2 + 3t 4t 1 

Therefore the solution of the IVP,	 ⎧ ⎪ x�(t) = Ax(t),⎪ ⎡ ⎤⎨ 1 ⎪ x(0) = ⎣ 2 ⎦⎪⎩ 3 
has solution, ⎡	 ⎤⎡ ⎤ ⎡ ⎤ 

1 0 0 1 1 
x(t) = exp(tA)x(0) = ⎣ 2t 1 0 ⎦⎣ 2 ⎦ = ⎣ 2t + 2 ⎦ . 

4t2 + 3t 4t 1 3 4t2 + 8t + 3 
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As a double­check, observe the derivative is, ⎡ ⎤ 
0 

x�(t) = ⎣ 2 ⎦ . 
8t + 11 

This is the same as, ⎡ ⎤⎡ ⎤ 
0 0 0 1 ⎣ 2 0 0 ⎦⎣ 2t + 2 ⎦ = Ax(t). 
3 4 0 4t2 + 8t + 3 

And x(0) = [1 2 3]T . 

(3)(10 points) p. 403, Problem 15 

Solution: The trace is Trace(A) = 0, and the determinant is det(A) = 2(−2) − (−1)3 = −1. 
Therefore the characteristic polynomial is, 

pA(λ) = λ2 − Trace(A)λ + det(A) = λ2 − 1 = (λ + 1)(λ − 1). 

Therefore the eigenvalues are λ1 = −1 and λ2 = 1, each with multiplicity 1. For λ1 = −1, the 
matrix A − λ1I is, 

3 −1 
A + I = 3 −1 . 

An eigenvector is, � � 
1 

v1 = 3 . 

For λ2 = 1, the matrix A − λ2I is, 
1 −1 

A − I = 3 −3 . 

An eigenvector is, � � 
1 

v2 = 1 . 

The change­of­basis matrix is,	 � � 
1 1 

U = [v1|v2] = 3 1 . 

Then AU = UD where D is the diagonal matrix, 

−1 0 
D = 0 1 . 

Therefore,	 � � 

exp(tD) = e−t 0 
.t0 e

And exp(tA) = U exp(tD)U−1. By Cramer’s rule, 

1 −1 1 
U−1 = (1/det(U)) 1 −1 = 3 −1 . −3 1 2 

Therefore, � � � � � � 

exp(tA) =
1 1 1 e−t 0 −1 1 

3 −1 .t2 3 1 0 e

Simplifying, this gives, 
t t1 −e−t + 3e e−t − eexp(tA) =

2 −3e−t + 3et 3e−t − et . 
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Therefore, � � � � � �
1 1 te−t + e= = . 

t t−e−t + 3e e−t − e 1 
t t−3e−t + 3e

exp(tA)x 3e−t 2 2 3e−t + t2 − e
 e

Also, � � � � 
s 3es 

exp(−sA)F(s) =
1 −es + 3e−s e − e−s 

.s2 −3es + 3e−s 3e − e−s s 

Simplifying, this gives, 
s 

exp(−sA)F(s) =
1 −3e2s + 9 + se − se−s 

.s2 −9e2s + 9 + 3se − se−s 

So the final answer is, � � � � � � � 
t t t s1 e−t + e 1 −e−t + 3e e−t − e t 1 −3e2s + 9 + se − se−s 

t sx(t) =
2 3e−t + e +

2 −3e−t + 3et 3e−t − et 2 −9e2s + 9 + 3se − se−s ds. 
0 

The following was NOT ASKED FOR IN THE EXERCISE. However, I can’t resist mentioning how 
much simpler the solution is if one does not use the matrix exponential. Since we have the transition 
matrix, the simplest solution is to change the basis, 

x(t) = Uz(t). 

Then, � �
1 10 = U−1x0 =z ,
2 1 

and, � � � �
1 1

G(t) = U−1F(t) =
1 −3 

e t +
2 −1 t.

2 9 
The original inhomogeneous IVP is equivalent to the IVP, 

z�(t) = Dz(t) + G(t) 
z(0) = z0 

Now this is a set of two uncoupled inhomogeneous 1st order linear IVPs, ⎧ 
3 
2

1 
2

1 z1(0)t +1 z1 = −⎨
 =t,z e 2 ⎩
 9 1 12 z2(0)�
2 

By the method of undetermined coefficients, particular solutions of the inhomogeneous ODEs (but 
not of the initial conditions!) are, ⎧ 

= =t,− −
z z2 e
2 2 2 

3 
4e
 1 

2
1 
2⎨ z1(t) = − t + t − ⎩ 

z2(t) = 9 
2

1 
2

1 
2tet + t + 

The general solution of the homogeneous equation is z1(t) = C1e
−t , z2(t) = C2e

t . Therefore the 
solution of the system of IVPs is, ⎧ 

3 
4e
t + 1 

2 t −
1 2 +
7 4e−t⎨ z1(t) = − ⎩ 
z2(t) = 9 

2 tet + 1 
2 t +
1 2 

In vector form, � � 

z(t) =
1 −3et + 2t − 2 + 7e−t 

4 18tet + 2t + 2 . 
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Therefore, � � � � 

x(t) = Uz(t) =
1 1 1 −3et + 2t − 2 + 7e−t 

4 3 1 18tet + 2t + 2 . 

Simplifying, this gives, 

x(t) =
1 18tet − 3et + 4t + 7e−t 

4 18tet − 9et + 8t − 4 + 21e−t . 

(4)(10 points) p. 403, Problem 25 

Solution: First of all, � � 
1 texp(tA) = I + tA = ,0 1 

and, � � 
te 0exp(tB) = 0 1 . 

Thus, � � � � � � 
t t1 t e 0 e texp(tA) exp(tB) = 0 1 0 1 = 0 1 . 

Also, � � � � � � 
t te 0 1 t e tet 

exp(tB) exp(tA) = 0 1 0 1 = 0 1 . 

Therefore exp(tA) exp(tB) does not equal exp(tB) exp(tA). 

Also, � � 
1 1 

A + B = 0 0 . 

Because this is an upper triangular matrix, pA+B(λ) = (λ− 1)(λ− 0). So the eigenvalues are λ1 = 0 
and λ2 = 1. The eigenvector for λ1 = 0 is, 

1 
v1 = −1 . 

The eigenvector for λ2 = 1 is, 
1 

v1 = 0 . 

So the change­of­basis matrix is, 

1 1 
U = [v1|v2] = −1 0 . 

And (A + B)U = UD where D is the diagonal matrix, 

0 0 
D = 0 1 . 

Of course, � � 
1 0exp(tD) = t .0 e

By Cramer’s rule, 

U−1 = 0 −1 
.1 1 

Therefore, � � � � � � 
1 1 1 0 0 −1exp(t(A + B)) = U exp(tD)U−1 = −1 0 t0 e 1 1 . 
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Simplifying, this is, 
t t 

exp(t(A + B)) = e e − 1 
.0 1 

Therefore exp(t(A + B)) equals neither exp(tA) exp(tB) nor exp(tB) exp(tA). 

(5)(10 points) p. 420, Problem 4 

Solution: Consider the complexified ODE, 

0 2 1 iωt x�(t) − −2 0 x(t) = e . −i 

First consider the case that ω = −2. By the method of undetermined coefficients, we guess that a 
particular solution is, 

xp(t) = C1 e iωt . 
C2 

Plugging in gives the linear equations, 

iωC1 − 2C2 iωt = 1 iωt e .2C1 + iωC2 
e −i 

The unique solution of this system of linear equations is, 

C1 = −i/(2 + ω), 
C2 = −1/(2 + ω) 

Therefore the particular solution of the complexified ODE is, 

i iωt xp(t) = 
−1 

2 + ω 1 e . 

So the real part is, 
1 sin(ωt) 

.xp(t) =
2 + ω − cos(ωt) 

Since the general solution of the homogeneous equation is, 

cos(2t) sin(2t)
D1 ,− sin(2t) + D2 cos(2t) 

the solution of the IVP is, � � � � � � � �
1 sin(ωt) cos(2t) 1 sin(2t)+ ax(t) =

2 + ω − cos(ωt) − sin(2t) + b +
2 + ω cos(2t) . 

Next suppose that ω = −2. Then, again by the method of undetermined coefficients, we guess that 
a particular solution is, 

B1 e−2itxp(t) = A1 te−2it + .
A2 B2 

Plugging in and solving the system of linear equations, one particular solution is, 

xp(t) = 1 
te−2it . −i 

Therefore the real part is, 
t cos(2t)

xp(t) = −t sin(2t) . 

And the solution of the initial value problem is, 

t cos(2t) cos(2t) sin(2t)+ bx(t) = −t sin(2t) + a − sin(2t) cos(2t) . 
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The response of the system is unbounded iff ω = −2.


(6)(10 points) p. 420, Problem 11


Solution: The goal is to prove Theorem 6.8.5 (which, incidentally, is essentially equivalent to our

Green’s kernel solution). Let c(t) be a continuously differentiable vector­valued function. Consider 
the continuously differentiable vector­value function, 

x(t) = Φ(t, t0)c(t). 

This is a solution of the IVP iff 
Φ�(t, t0)c(t) + Φ(t, t0)c�(t) = A(t)Φ(t, t0)c(t) + F(t), 

Φ(t0, t0)c(t0) = 0 

By hypothesis, Φ�(t, t0) = A(t)Φ(t, t0) and Φ(t0, t0) = In. Therefore x(t) is a solution of the IVP iff, 

Φ(t, t0)c�(t) = F(t), 
c(t0) = 0 

By the last part of Theorem 6.8.4, Φ(t0, t)Φ(t, t0) = In. Therefore x(t) is a solution of the IVP iff, 

c�(t) = Φ(t0, t)F(t), 
c(t0) = 0 

By the Fundamental Theorem of Calculus, there is a unique solution of this IVP, and it is given by, 
t 

c(t) = Φ(t0, s)F(s)ds. 
t0 

Therefore, the unique solution of the IVP is given by, 
t 

x(t) = Φ(t, t0)c(t) = Φ(t, t0) Φ(t0, s)F(s)ds. 
t0 

The second part of Theorem 6.8.5 follows easily from the first part. 
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