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18.034 SOLUTIONS TO PROBLEM SET 5 

Due date: Friday, April 2 in lecture. Late work will be accepted only with a medical note or for 
another Institute­approved reason. You are strongly encouraged to work with others, but the final 
write­up should be entirely your own and based on your own understanding. 

(1)(10 points) Read Spotlight on Approximating Functions on pp 616–630. Everybody will receive 
full credit for this problem. If you have any questions about the material, want to discuss the 
material further, etc., please come and talk with me or Edward during office hours. There is a 
serious mistake in the proof of Theorem 9, p. 626 (which is easily corrected by using Theorem 13). 
Can you see what the mistake is? 

Remark: This was not to be turned in. There is a typo in Theorem 9 – all instances of C0 should be 
C1. A more serious mistake is that it is only proved that the Fourier series of f converges uniformly 
to a continuous function, but it is not proved that this continuous function is f . In Theorem 13 it 
is proved that the Fourier series converges pointwise to f , which finishes the proof that the Fourier 
series converges uniformly to f . 

(2)(10 points) The Riemann zeta function ζ(s) is defined for real numbers s > 1 by the formula, 
∞

. 
ns 

n=1 

1 
ζ(s) = 

(In fact the Riemann zeta function can be defined as an analytic function for every complex number 
s except 1, but certainly not by the series above.) The values of ζ(s) are of importance throughout 
mathematics, and one of the most famous open problems in mathematics is to prove that every root 

1of ζ(s) is of the form + bi for some real number b.2 

On the interval [−π, π], consider the orthonormal sequence Φ = (φn)n∈Z where, 

φn(x) = √1
2π

e inx . 

uxLet u be a real number and consider the function fu(x) = e . 

(a)(5 points) Compute the Fourier coefficients, 
1 
� π 

�fu, φn� = √
2π −π 

e ux e−inxdx. 

Solution: If u = 0, then �f0, φ0� = 
√

2π and �f0, φn� = 0 for n = 0. Thus suppose that u = 0. 
Then for every n, � π1 1 1 

e(u−in)x 
π 

e(u−in)xdxu, φn� =�f √
2π 

= √
2π (u− in) 

. 
−π−π 

Of course e−inπ = einπ = (−1)n. So the Fourier coefficient is, 

(−1)n eπu − e−πu 

.�fu, φn� = √
2π u− in 

(b)(5 points) Apply Plancherel’s theorem, 

u, fu� = ,�f |�fu, φn�|2 
n∈Z 
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to get an equation that can be used to find a formula, � 1 
= g(u), 

∞

2u2 + n
n=1 

where g(u) is some simple expression involving exponentials, etc. (Hint: One formulation of the 
answer involves the hyperbolic cotangent). 

Solution: For u = 0, there is only one nonzero Fourier coefficient, and Plancherel’s theorem simply 
gives, � π 

212dx = |
√

2π = 2π, |
−π 

which is clearly true. The interesting case is if u =� 0. Then we have, 

1 (eπu − e−πu)2 
.|�fu, φn�|2 = 2π u − in 2| |

Remember that u − in is a complex number. Therefore u − in 2 = u2 + n2. Therefore, | |

|�fu, φn�|2 =
1 (eπu − e−πu)2 

.
22π u2 + n

Applying Plancherel’s theorem, � π ∞
ux|e |2dx = 

� 1 (eπu − e−πu)2 
.

2u2 + n−π n=−∞ 
2π 

First of all, |eux 2 is just e2ux. So the integral is, | � π 

e 2uxdx = 
e2πu − e−2πu 

. 
−π 2u 

As for the sum, factoring common terms gives, 

(eπu − e−πu)2 �∞ 1 
.

22π u2 + n
n=−∞ 

Notice that the term for −n is the same as the term for n. Singling out the term for n = 0, the 
series reduces to, � � ∞(eπu − e−πu)2 1 � 1 

22π u2 
+ 2 

u2 + n
. 

n=1 

So we have the equation, 

e2πu − e−2πu (eπu − e−πu)2 1 � 1∞

22u 
=

2π u2 
+ 2 

u2 + n
. 

n=1 

Dividing both sides by (eπu − e−πu)2/2π gives, 
2πu − e−2πu 1 � 1π e

∞

= + 2 
u (eπu − e−πu)2 2 2 

. 
u u2 + n

n=1 

The term (e2πu − e−2πu)/(eπu − e−πu)2 is the same as (v2 − w2)/(v − w)2 where v = eπu and 
w = e−πu . Since the numerator is a difference of squares, this simplifies to (v +w)/(v − w). Making 
this simplification and solving for the series gives, � 1 eπu + e−πu ∞

π 1 
= 

πu − e−πu 
− 

2u2 
. 

u2 + n2 2u e
n=1 
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Recall that the hyperbolic cotangent is defined by, 
ey + e−y 

coth(y) = . 
ey − e−y 

Therefore the series is, � 1∞
π 1 

u2 + n2 
=

2u 
coth(πu)− 

2u
.

2 
n=1 

It is worth remarking that the series above converges uniformly for all u. Indeed the tail of the 
series is less than or equal to the tail of the series for u = 0, which is the tail of the convergent series 
∞ 1/n2 . The right­hand­side, however, is only defined for u =� 0. However, the singularity at n=1 

u = 0 is a removable singularity. The continuous extension of the right­hand­side is a function that 
is infinitely differentiable for all u. 

(c)(5 points extra credit) Consider the Taylor expansion of both sides of the equation above. Use 
this to find an expression, for each even integer 2n > 0, of the value ζ(2n) in terms of a sequence 
of numbers that satisfies a recursion relation you can write down. Compute the values of ζ(2), ζ(4) 
and ζ(6). (Remark: Of course there is great freedom in the sequence of numbers to use. The most 
common choice is to express ζ(2n) in terms of the Bernoulli numbers, Bn, which are defined by the 
following, 

1 1 1 ∞
2n−1 

ez − 1 
− + = (−1)n−1 Bn 

z . 
z 2 (2n)!

n=1 

The recursion relation for Bn is easy to write down.) 

Solution: The basic idea is to compute the Taylor expansion of the continuous extension of the 
right­hand­side of the equation above. The basic Taylor expansion is, � 1∞

nz =e
n!

z , 
n=0 

where 0! is defined to be 1. When we sum ez +e−z, all the terms involving an odd power of z cancel. 
When we sum ez − e−z, all the terms involving an even power of z cancel. This gives, � π2n∞

πu + e−πu 2n e = 2 
(2n)!

u , 
n=0 

and � π2n+1 
πu − e−πu 

∞
2n+1 e = 2 u .

(2n + 1)!
n=0 

We write the second series as, � π2n1 πu − e−πu)
∞

2n(e = 2 u . 
πu (2n + 1)!

n=0 

Now we introduce the power series, � 
πu + e−πu 

� 1 πu − e−πu) 
∞

2n e / (e = π2n anu . 
πu 

n=0 

Here the coefficients are to be determined. To find the coefficients, we use the identity, 
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� π2n �∞

2 
(2n)!

u 2n = e πu + e−πu = [
1

(e πu − e−πu)] 
∞

π2m amu 2m 

πu 
n=0 m=0 � π2l �∞ ∞

2l 2m= 2 u π2m amu .
(2l + 1)!

l=0 m=0 

Multiplying the two series term­by­term gives, �� π2(m+l)am
∞ ∞

2(m+l)2 u .
(2l + 1)! 

l=0 m=0 

Gathering all terms whose exponent is 2n gives, 
n∞

am 
π2n 2n2 u .

(2n − 2m + 1)! 
n=0 m=0 

Since the two power series are convergent and equal, for each n the coefficient of u2n of each series 
is equal. This gives, 

2
1 

π2n = 2 
n

am 
π2n .

(2n)! (2n − 2m + 1)!
m=0 

Of course 2π2n cancels from each side of the equation. Plugging in n = 0 gives a0 = 1. For each 
n > 0, solving for an gives, 

1 n−1
am 

an = .
(2n)! 

− 
(2n − 2m + 1)!

m=0 

This gives a recursive algorithm for finding the numbers an. It is interesting to notice that each an 

is a fraction (this can be proved by an easy induction argument). 

Plugging in the power series for the right­hand­side of our original equation, 

π 1 ∞� 1 1 ∞

( anπ2n u 2n)− = 
2 
((a0 + anπ2n u 2n)− 1).

2 2u2u πu 2u
n=0 n=1 

Since a0 = 1, this cancels and we get, � 1 � π2m+2∞ ∞
2m 

u2 + n
=

2 
am+1u .

2 
n=1 m=0 

On the other hand, for each integer n, we can expand 1/(u2 + n2) as a geometric series, 

1 1 1 
= = 

u2 + n2 n2 1 + (u/n)2 

1 ∞ � 1 2m(−1)m 1 
u 2m = 

∞

(−1)m u .
2 2m 2m+2n n n

m=0 m=0 

Plugging this in gives the series, � 1 � � 1 2m= (−1)m u . 
∞ ∞ ∞

2 2m+2u2 + n n
n=1 n=1 m=0 
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We would like to interchange the sums in this last series. This is justified if the series is absolutely 
convergent, i.e., if the series of absolute values is convergent. Let |u| < 1. Then the series of absolute 
values is, 

∞ ∞ � 1�� 1 ∞
2m = 

2m+2 
|u|

n=1 
2 − | |2 

. 
n n u

n=1 m=0 

Of course this series is dominated by the series, 
∞1 � 1 

2 21− |u|
+ 

n=2 
n − 1

. 

By the integral test, for example, this last series is convergent. Therefore the original series is 
absolutely convergent which justifies interchanging the sums. This gives, � � 1 �∞ ∞ ∞

2m(−1)m u 2m = (−1)mζ(2m + 2)u .
2m+2n

m=0 n=1 m=0 

Finally, we get the equality of convergent power series, � � π2m+2∞ ∞
2m2m =(−1)mζ(2m + 2)u 

2 
am+1u . 

m=0 m=0 

Therefore the coefficient of u2m on each side of the equation is equal, i.e., 
2m+2ζ(2m + 2) = (−1)m am+1 

π ,
2 

or, 
m 

π2mζ(2m) = (−1)m−1 a .
2 

This is a true expression, and the recursive formula can be readily used to compute any particular 
value of ζ(2m). The standard convention, however, is to use the Bernoulli numbers Bn rather than 
an. The relation between the two of them follows from the straightforward computation, 

1 1 1 1 
ez − 1

+
2 
− 

z 
= 

2 
coth( 

z 1
= 

∞
an 

z 2n−1 .
2
)− 

z 22n 
n=1 

This gives the identities, 
Bn = (−1)n−1(2n)! 

22n an, 

an = (−1)n−122n 

Bn(2n)! 

In terms of the Bernoulli numbers, 

22m−1 

Bmπ2mζ(2m) = .
(2m)! 

2mIn particular, each value of ζ(2m) is a rational number times π . 

Using the recursion relation, we have a0 = 1, a1 = 1/3, a2 = −1/45 and a3 = 2/945. This gives, 
B1 = 1/6, B2 = 1/30, and B3 = 1/42. So the first three even zeta values are, 

π2 π4 π6 

ζ(2) = 
6 

, ζ(4) = 
90 

, ζ(6) = .
945 

Many beautiful results involving the Riemann zeta function and Bernoulli numbers can be found at 
the following URL. 

http://mathworld.wolfram.com/RiemannZetaFunction.html 
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Each of the following problems is from the textbook. The point value of the problem is next to the 
problem. 

(3)(5 points) p. 581, Problem 11 

Solution: First of all, the normalized Fourier trigonometric functions on the interval [−π, π] are, 
1c0(x) = √
2π

, 
1cn(x) = √
π 

cos(nx), n = 1, 2, . . . 
1sn(x) = √
π 

sin(nx), n = 1, 2, . . . 

Clearly f(x) is an odd function. Therefore the only nonzero Fourier coefficients are the coefficients 
of sn. And these are, 

1 
� B 

�f, sn� = √
π 

2 (−A) sin(nx)dx. 
0 

This is just, 
B2A 1 2A 1− cos(nB)

cos(nx) =√
π 

−√
π 

. 
n
 n0 

Therefore the Fourier series equals the Fourier sine series, which is,

∞

= − 
π 

A 1− cos(nB)
FS(f) sin(nx). 

n 
n=1 

(4)(10 points) p. 581, Problem 23 

Solution, (a): The function f(x) = |x| is clearly an even function. Therefore the Fourier coeffi­
cients, �f, sn� are all zero. First of all, � π π21 2
 π3x

2 xdx = 
0

�f, c0� = =√
2π 

√
2π 

.
2 20 

For each n > 0, 
1 

� π 

�f, cn� = √
π 

2 x cos(nx)dx. 
0 

We solve this by integration by parts, u = x, dv = cos(nx) and du = dx, v = 1/n sin(nx). This gives, 
π � π2
2 1 1 

x sin(nx) sin(nx)dx. 
0 

+ √
2π 0 

−√
2π n n 

The first term is zero. The second term is easy to integrate. So,

π2 1 

2 
cos(nx) 

2 1 
2 

((−1)n − 1)�f, cn� = =√
2π 

√
2π 

. 
n n0 

This is zero if n is even. And for n = 2k + 1 an odd integer, it is, 

4 1 �f, c2k+1� = − √
2π (2k + 1)2 

. 

Therefore the Fourier series is, 
∞

(2k + 1)2 
cos((2k + 1)x).

2 
− 

π 
k=0 

6 

π 
FS(f) = 

4 1 



In particular, plugging in x = 0, gives, � 1π 4 ∞
.FS(f)(0) =

2 
− 

π (2k + 1)2 
k=0 

Since the periodic extension f� is continuous and piecewise smooth, Theorem 10.2.2 implies that the 
Fourier series converges pointwise to f� at every point of R. In particular, for x = 0, the Fourier 
series converges pointwise to f(0) = 0, i.e., � 1π 4 ∞

0 = .
2 
− 

π (2k + 1)2 
k=0 

Therefore, � 1 π2 

(2k + 1)2 
=

8 
. 

∞

k=0 

(b) As mentioned above, the periodic extension f�of |x| is continuous and piecewise smooth. There­
fore, by Theorem 10.2.2, the Fourier series FS[f ](x) converges pointwise to f�(x) for every x in 
R.


(5)(5 points) p. 588, Problem 7


Solution: On the interval [−π, π] the normalized Fourier exponential functions are,


1 inx φn(x) = e .√
2π 

These functions are orthonormal. In this case, f(x) = 
√

2πφ1(x). Therefore �f, φn� = 
√

2π�φ1, φn�. 
This is 0 unless n = 1, and it is 

√
2π for n = 1. So the Fourier exponential series is simply, 

ix ix e = 
√

2πφ1(x) = e . 

(Not a very exciting Fourier series!) 

(6)(10 points) p. 588, Problem 17 

Solution: The solution is more readable if we use variable names for the constants. Denote by m 
the mass of the spring, m = 1 kg. Denote by k the spring constant, k = 1.01 N . Denote by b the m 

damping constant, b = 0.2 
s
N 
2 . And denote by F0 the amplitude of the square wave driving force, 

i.e., F0 = 1 N. 

Denote by x(t) the position of the spring at time t. The differential equation describing the motion 
is, 

mx��(t) + bx�(t) + kx(t) = f(t). 

Because f(t) is periodic of period 2π, in the steady state x(t) will be a twice differentiable, periodic 
function of period 2π. Therefore the Fourier exponential series of x(t) will converge to x(t) (with 
respect to the interval [−π, π]). 

1The normalized Fourier exponential functions on [−π, π] are φn(t) = √
2π 

einx . Define p(D) to be, 

p(D) = mD2 + bD + k. 

Then the Fourier coefficients an(x) = �x, φn� satisfy the equation, 
2 p(in)an(x) = an(f), p(in) = −(mn − k) + ibn. 
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Because b =� 0, p(in) is nonzero for each n. Therefore we can solve to get, 

1 
an(x) = an(f) = q(n)an(f), 

p(in)

where q(n) is the function, 

1 � 
2 

� 
(mn − k) + ibn .q(n) = − 

(mn2 − k)2 + b2n2 

It remains to compute the Fourier coefficients an(f). 

For n = 0, 
1 
� π 1 

� π π 
a0(f) = √

2π
f(t)dt = F0dt = F0 2

.√
2π 0−π 

Let n be different than 0. Then, 

an(f) = √1
2π 

� 

0 

π 

F0e
−inxdx = 

iF0 � 
e−inx 

��π = 
iF0 ((−1)n − 1) . 

n
√

2π 0 n
√

2π 

Therefore an(f) = 0 if n is even. If n is odd, then 

i2F0 
an(f) = .− 

n
√

2π 

Substituting this into our equation for an(x) gives, 

π 
a0(x) = 

F0 

2
,

k 

for n even, 
an(x) = 0, 

and for n odd, 

2F0 1 � 
2 

� 
an(x) = q(n)an(f) = 

2 − k)2 + b2n2 
−bn + i(mn − k) . 

n
√

2π (mn

We can simplify this somewhat by defining, 
√

2π F0 1 
,An = 2 

|an(x)| = 
n 
� 

(mn2 − k)2 + b2n2 

and defining, 
2 

φn = tan−1(Im(an(x))/Re(an(x))) = tan−1 mn − k
. 

bn 

Then we have, 
2 

Ane−iφnan(x) = √
2π

. 

Of course A−n = An, and φ−n = −φn. Therefore the Fourier series is, 
∞1 � 1 � 

i(2l+1)t + a−(2l+1)e
−i(2l+1)tFS[x] = a0(f)√

2π 
+ √

2π
a2l+1(x)e


l=0


1 ∞
A2l+1 = a0(f)√

2π 
+ 

2 
(exp[i((2l + 1)t − φ2l+1)] + exp[−i((2l + 1)t − φ2l+1)]) . 

l=0 
8 
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For any real number θ, exp(iθ)+exp(−iθ) equals 2 cos(θ). Therefore the Fourier series for x reduces 
to, 

1 ∞

FS[x] = a0(f)√
2π 

+ A2l+1 cos((2l + 1)t − φ2l+1). 
l=0 

Plugging in for a0(f) and A2l+1, and changing the name of the dummy variable l to n, 
∞

F0 1 
FS[x] = 

F0 + 
� � 

(m(2n + 1)2 − k)2 + b2(2n + 1)2 
cos((2n + 1)t − φ2n+1).2k 2n + 1 

n=0 

Let’s do a little more analysis (although this is not required for this problem). Define ωn = (2n+1), 
the frequency of the nth term in the Fourier sequence. Define un = ω2 . Then the nth term in the n

Fourier sequence is, 
1 

F0 � 
n − k)2 + b2ω2 

cos(ωnt − φ2n+1). 
ωn (mω2 

n 

In particular, the square of the amplitude is, 
1 

F 2 
0 un ((mun − k)2 + b2un)

. 

The near resonant term is the term such that the square of the amplitude is largest, i.e., such that 
the following expression is smallest, 

un (mun − k)2 + b2 un . 

Consider the function, � � 
g(u) = u (mu − k)2 + b2 u . 

This is a cubic polynomial in u, it is negative for u < 0, it is positive for u > 0, and it has precisely 
one root at u = 0. There will be 2 critical points of this function, one of which is a local minimum 
and one of which is a local maximum. They occur when, 

g�(u) = (mu − k)2 + b2 u + u 2m(mu − k) + b2 , 

is zero. By the quadratic equation, the local minimum is, 

1 � 
uc =

2mk − b2 

+
3m

b4 − 4mkb2 + m2k2 .
2 23m

The near resonant term will be either n = 0 or the value of n such that un is nearest to uc. 

For the constants in our particular problem, 

uc = 0.969138588 . . . 

So the near resonant term will be the one for which un is closest to 1, i.e. n = 0. The near resonant 
term is, 

1 
F0 � 

(m − k)2 + b2 
cos(t − φ2n+1) ≈ 4.994 cos(t − 0.05). 
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