18.034 SOLUTIONS TO PROBLEM SET 1

Due date: Friday, February 13 in lecture. Late work will be accepted only with a medical note
or for another Institute-approved reason. You are strongly encouraged to work with others, but the
final write-up should be entirely your own and based on your own understanding.

Problem 1(20 points) The logistic model for a fish population with harvesting (p. 17) leads to
the following IVP:
{yzay—WQ—H,
y(0) =wo
Here a and g are positive and ¢ and H are nonnegative. The IVP is defined on the interval (0, c0).
Also, the model is only valid as long as y(¢) > 0: If at any instant ¢; (greater than 0) y(t1) equals
0, then the population is extinct, and the population will remain extinct for all ¢ > ¢;.

(a)(10 points) The equilibrium solutions are the solutions of the ODE (without the initial condi-
tion) for which y'(t) = 0 for all ¢. Find inequalities among a, ¢, and H that determine when there
will be 2 equilibrium solutions, 1 equilibrium solution, or no equilibrium solutions.

Solution: The equilibrium solutions are the constants y such that ay—cy?—H = 0; the normal form
is —cy? +ay — H = 0. The discriminant of this quadratic equation is (a)? — 4(—c)(—H) = a® — 4cH.
By the quadratic formula, the number of solutions is,

2, both ¢ # 0 and a? — 4cH > 0
1, either (C#Oand a2—40H:0)7 orc=0
0, a®>—4cH <0.

(b)(10 points) Suppose that both a and ¢ are positive. What is the maximum value of H for
which there is an equilibrium solution? If H is larger than this value, what is the long-term behavior
of any solution of the ODE?

Solution: By part (a), the maximum value of H is Hy = Z—Z. If H> Hy, then i = ay — cy? — H is
negative for all values of y. Therefore the solution is everywhere decreasing.

Let’s be more precise. Completing the square gives,
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Therefore, 3’ is at most —(H — Z—z) Denote z(t) = —(H — Z—z)t + yo. Then y' — 2’ is at most 0,
i.e., y — z is nonincreasing. Also y(0) — z(0) = 0. Therefore y — z is nonpositive. So y(t) < z(t).
Therefore, the population becomes extinct at a time,

4eyo
< —
= 4cH — a?

In fact this understates the truth — if you solve the separable differential equation exactly you
will find there is a time 7(a,c, H) > 0 so that, independent of the initial value yy, the population
becomes extinct at a time ¢ < 7.



Problem 2(20 points) After a change of variables, the logistic equation with harvesting reduces
to the following IVP (neglecting the extinction issue),

¥ =2+ K,
z(0) =x9 >0

where = x(t) and where K is a constant. Suppose that K = b? for some b > 0.

(a)(10 points) Formally rewrite the ODE as f(z)dz = ¢(t)dt and integrate to find an exact
solution. Express your answer in the form b — x = h(t) for some expresion h(t). Don’t forget the

special case xg = b.
The ODE separates as,

1
By partial fractions, this is the same as,

1 1
/<b+x+b_$>d:1:_/2bdt.

Antidifferentiating,
b
ln< ““) — bt + C.
b—x
Exponentiating,
b +x — A/62bt
b—=x ’
or equivalently,
b—z _ Ae—2bt
b+ x '
Rewriting b+ = = 2b — (b — ), and solving for b — = gives,
2bAe 2t
b—xz(t) = ———.
z(t) 1+ Ae—2bt

If zg # b, define a new parameter o = b_mf“. Then, solving in terms of «,

(b —xo)e 2 (W) ., xo # b,
zo = b.

w—xw>—{

)

(b)(10 points) At some instant ¢1, the value of x(t1) is very close to b. At that instant, the value
of b in the differential equation is abruptly increased to a larger value by, and z(t) gradually moves
from the value b to the value b;. Assuming b; — b is small compared to b, approximately how much
time 7 elapses before the difference by — x(¢; + 7) is one half of the initial difference by — b7

Solution: To simplify the problem, change coordinates in ¢ so that ¢t; = 0. Because the ODE is
autonomous, this doesn’t change the ODE (this will be the key to analyzing solutions of autonomous
ODEs later on). Let xg = x(t1). Then the solution of the IVP with b; has the form,

(b1 = (1)) = (br = z0)e™" <<1 oy iale—%lt> |

where a1 = bgl‘fo.




By hypothesis, @ ~ 0. Therefore the third factor in the solution is approximately 1, and the
solution of the IVP is approximately a decreasing exponential,
(bl — x(t)) =~ (bl — 1’0)672b1t.
So the half-life is
In(2)
TR .
2by

(c)(0 points — not to be written up/handed in). Critical ecosystem double whammy. Interpret
your answer from (b). In particular, if the parameters a, ¢ and H are near the critical value for
extinction, does the system respond more quickly or less quickly to a decrease in H than if the
parameters are far from the critical value?

Solution: This part was not to be handed in. The “solution” is only given for fun. The change of
variables necessary to put the ODE in standard form is,

{x—C(y—%),

b:\/%—cH.

So if a, ¢ and H are near the critical value, then b is near 0. Decreasing H while holding a and ¢
fixed increases b to a new value b;. By (b), the half-life, or “reaction time”, of the system to this

change is proportional to
1 1

by b
So when b is small, the reaction time is large. This is the “double whammy”: not only is the
population close to the critical value of extinction (so a natural disaster, etc. could easily drive the
population to extinction), but also a positive change in the environment (for instance, a government
ban on fishing in a certain area) takes a long time to have a positive impact on the population.

Problem 3(5 points) Exercise 14, p. 49.

Solution: It is easier to spot the integrating factor without putting the ODE in normal form. For
any ODE of the form,

ty/ +ay = Q(t)’ t =0,

ta—l

I

(ty) = t""q(t).

In this case, antidifferentiating both sides,

1
2y (t) = /t3dt = Zt4 +C.

an integrating factor is clearly u(t) =

So the general solution is,

t)=-t>+—=, t>0.
y(t) = "+ 5, 12

The qualitative behavior as t — 01 depends on the constant C. If C' > 0, then y(t) diverges to
+00 as %2 If C = 0, then y(t) converges to 0 as t2. If C < 0, then y(t) diverges to —oo as ;—21

The qualitative behavior as t — oo is the same for all solutions: the graph of y(¢) converges to
the graph of the steady-state solution, 1t2. In particular it diverges to oo as t2.

Problem 4(5 points) Exercise 20, p. 49.



As above, the integrating factor is easier to “eyeball” than to deduce formally. Multiplying both
sides of the equation by sint gives,

(sint)y’ + (cost)y = 2(sint)(cost), y(3w/4) = 2.
This is the same as,
(sin(t)y)" = (sin(1)?)', y(3m/4) = 2.
Antidifferentiating, the general solution is,

sin(t)y = sin(t)* 4 C.
Solving the initial condition, C' = —3. So the solution of the IVP is,
y(t) = sin(t) — 3csc(t).

Because sin(t) — 0 like t as t — 0%, y(t) diverges to —oco like = as t — 0.



