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18.034 SOLUTIONS TO PROBLEM SET 1 

Due date: Friday, February 13 in lecture. Late work will be accepted only with a medical note 
or for another Institute­approved reason. You are strongly encouraged to work with others, but the 
final write­up should be entirely your own and based on your own understanding. 

Problem 1(20 points) The logistic model for a fish population with harvesting (p. 17) leads to 
the following IVP: � 

y� = ay − cy2 − H, 
y(0) = y0 

Here a and y0 are positive and c and H are nonnegative. The IVP is defined on the interval (0, ∞). 
Also, the model is only valid as long as y(t) ≥ 0: If at any instant t1 (greater than 0) y(t1) equals 
0, then the population is extinct, and the population will remain extinct for all t ≥ t1. 

(a)(10 points) The equilibrium solutions are the solutions of the ODE (without the initial condi­
tion) for which y�(t) = 0 for all t. Find inequalities among a, c, and H that determine when there 
will be 2 equilibrium solutions, 1 equilibrium solution, or no equilibrium solutions. 

2Solution: The equilibrium solutions are the constants y such that ay−cy −H = 0; the normal form 
is −cy2 +ay − H = 0. The discriminant of this quadratic equation is (a)2 − 4(−c)(−H) = a2 − 4cH. 
By the quadratic formula, the number of solutions is, ⎧ ⎨ 2, both c = 0 and a2 − 4cH > 0 

1, either c = 0 and a2 − 4cH = 0 , or c = 0 ⎩ 
�

0, a2 − 4cH < 0. 

(b)(10 points) Suppose that both a and c are positive. What is the maximum value of H for 
which there is an equilibrium solution? If H is larger than this value, what is the long­term behavior 
of any solution of the ODE? 

2aSolution: By part (a), the maximum value of H is H0 = 4c . If H > H0, then y� = ay − cy2 − H is 
negative for all values of y. Therefore the solution is everywhere decreasing. 

Let’s be more precise. Completing the square gives, � �2 
� 

a2 
2 = 

a 
ay − cy − H −c y − H −

2 
− 

4c
. 

2a aTherefore, y� is at most −(H − 
2 
). Denote z(t) = −(H − 4c )t + y0. Then y� − z� is at most 0, 4c 

i.e., y − z is nonincreasing. Also y(0) − z(0) = 0. Therefore y − z is nonpositive. So y(t) ≤ z(t). 
Therefore, the population becomes extinct at a time, 

4cy0 
.

2
t ≤ 

4cH − a

In fact this understates the truth – if you solve the separable differential equation exactly you 
will find there is a time τ(a, c, H) > 0 so that, independent of the initial value y0, the population 
becomes extinct at a time t ≤ τ . 
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Problem 2(20 points) After a change of variables, the logistic equation with harvesting reduces 
to the following IVP (neglecting the extinction issue), 

x� = −x2 + K, 
x(0) = x0 > 0 

where x = x(t) and where K is a constant. Suppose that K = b2 for some b > 0. 

(a)(10 points) Formally rewrite the ODE as f(x)dx = g(t)dt and integrate to find an exact 
solution. Express your answer in the form b − x = h(t) for some expresion h(t). Don’t forget the 
special case x0 = b. 

The ODE separates as, � �
1 

dx = dt. 
b2 − x2 

By partial fractions, this is the same as, 

1 1 
+ dx = 2bdt. 

b + x b − x 

Antidifferentiating, � � 
b + x

ln = 2bt + C. 
b − x 

Exponentiating, 
b + x 2bt= A�e ,
b − x 

or equivalently, 
b − x 

= Ae−2bt . 
b + x 

Rewriting b + x = 2b − (b − x), and solving for b − x gives, 

2bAe−2bt 

b − x(t) =
1 + Ae−2bt 

. 

If x0 =� b, define a new parameter α = b−x0 
2b . Then, solving in terms of α, 

1 
(1−α)+αe−2bt , x0 = b,(b − x(t)) = (b − x0)e−2bt �

0, x0 = b. 

(b)(10 points) At some instant t1, the value of x(t1) is very close to b. At that instant, the value 
of b in the differential equation is abruptly increased to a larger value b1, and x(t) gradually moves 
from the value b to the value b1. Assuming b1 − b is small compared to b, approximately how much 
time τ elapses before the difference b1 − x(t1 + τ) is one half of the initial difference b1 − b? 

Solution: To simplify the problem, change coordinates in t so that t1 = 0. Because the ODE is 
autonomous, this doesn’t change the ODE (this will be the key to analyzing solutions of autonomous 
ODEs later on). Let x0 = x(t1). Then the solution of the IVP with b1 has the form, 

1
(b1 − x(t)) = (b1 − x0)e−2b1t 

(1 − α1) + α1e−2b1t 
, 

b−x0where α1 = 2b . 
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By hypothesis, α ≈ 0. Therefore the third factor in the solution is approximately 1, and the 
solution of the IVP is approximately a decreasing exponential, 

(b1 − x(t)) ≈ (b1 − x0)e−2b1t . 

So the half­life is 
ln(2) 

.τ ≈ 
2b1 

(c)(0 points – not to be written up/handed in). Critical ecosystem double whammy. Interpret 
your answer from (b). In particular, if the parameters a, c and H are near the critical value for 
extinction, does the system respond more quickly or less quickly to a decrease in H than if the 
parameters are far from the critical value? 

Solution: This part was not to be handed in. The “solution” is only given for fun. The change of 
variables necessary to put the ODE in standard form is, 

a x = c ,� y − 2 
b = a

4 

2 − cH. 

So if a, c and H are near the critical value, then b is near 0. Decreasing H while holding a and c 
fixed increases b to a new value b1. By (b), the half­life, or “reaction time”, of the system to this 
change is proportional to 

1 1 
. 

b1 
≈ 

b 

So when b is small, the reaction time is large. This is the “double whammy”: not only is the 
population close to the critical value of extinction (so a natural disaster, etc. could easily drive the 
population to extinction), but also a positive change in the environment (for instance, a government 
ban on fishing in a certain area) takes a long time to have a positive impact on the population. 

Problem 3(5 points) Exercise 14, p. 49. 

Solution: It is easier to spot the integrating factor without putting the ODE in normal form. For 
any ODE of the form, 

ty� + ay = q(t), t ≥ 0, 

an integrating factor is clearly u(t) = ta−1 , 

(ta y)� = ta−1 q(t). 

In this case, antidifferentiating both sides, 
12t y(t) = t3dt = t4 + C. 
4

So the general solution is, 
1 C 

y(t) = t2 + 
t2 

, t ≥ 0.
4

The qualitative behavior as t 0+ depends on the constant C. If C > 0, then y(t) diverges to →
+∞ as 1 . If C = 0, then y(t) converges to 0 as t2. If C < 0, then y(t) diverges to −∞ as −1 

t2 t2 
. 

The qualitative behavior as t → ∞ is the same for all solutions: the graph of y(t) converges to 
the graph of the steady­state solution, 1 t2. In particular it diverges to ∞ as t2 .4

Problem 4(5 points) Exercise 20, p. 49. 
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As above, the integrating factor is easier to “eyeball” than to deduce formally. Multiplying both 
sides of the equation by sin t gives, 

(sin t)y� + (cos t)y = 2(sin t)(cos t), y(3π/4) = 2. 

This is the same as, 
(sin(t)y)� = (sin(t)2)�, y(3π/4) = 2. 

Antidifferentiating, the general solution is, 

sin(t)y = sin(t)2 + C. 

Solving the initial condition, C = −3. So the solution of the IVP is, 

y(t) = sin(t)− 3 csc(t). 

0+ 
t → .Because sin(t)→ 0 like t as t → 0+ , y(t) diverges to −∞ like −1 as t 
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