18.03 Recitation 18, April 13, 2010

Laplace transform

Rules for the Laplace transform

Definition: $\mathcal{L}[f(t)] = F(s) = \int_{0-}^{\infty} f(t)e^{-st} dt$ for $\operatorname{Re}(s) \gg 0$.

Linearity: $\mathcal{L}[af(t) + bg(t)] = aF(s) + bG(s)$.

 \mathcal{L}^{-1} : F(s) essentially determines f(t).

s-shift rule: $\mathcal{L}[e^{rt}f(t)] = F(s-r)$.

t-derivative: $\mathcal{L}[f'(t)] = sF(s)$ where f'(t) denotes the generalized derivative.

If f(t) is continuous for t > 0 and $f'_r(t)$ is the ordinary derivative, then

$$\mathcal{L}[f_r'(t)] = sF(s) - f(0+).$$

Formulas for the Laplace transform

$$\begin{split} \mathcal{L}[1] &= \frac{1}{s} \,, \quad \mathcal{L}[\delta(t-a)] = e^{-as} \\ \mathcal{L}[e^{rt}] &= \frac{1}{s-r} \,, \quad \mathcal{L}[t^n] = \frac{n!}{s^{n+1}} \\ \mathcal{L}[\cos(\omega t)] &= \frac{s}{s^2 + \omega^2} \,, \quad \mathcal{L}[\sin(\omega t)] = \frac{\omega}{s^2 + \omega^2} \end{split}$$

- 1. Find (from the rules and formulas) the Laplace transform of $u(t)e^{-t}(t^2+1)$
- **2.** Let $f(t) = e^{-t}\cos(3t)$. From the rules and tables, what is $F(s) = \mathcal{L}[f(t)]$? Compute the generalized derivative f'(t) and its Laplace transform. Verify the t-derivative rule in this case.
- 3. Find the inverse Laplace transform for each of the following.

$$\frac{2s+1}{s^2+9}$$
 , $\frac{s^2+2}{s^3-s}$, $\frac{2}{s^2(s-1)}$

- **4.** Find the unit step and impulse response for the operator D+2I, using the Laplace transform.
- 5. Solve $\dot{x} + 2x = t^2$ with initial condition x(0+) = 1, using Laplace transform.

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.