18.03 Recitation 17, April 8, 2010

Convolution

$$f(t) * g(t) = \int_0^t f(t - \tau)g(\tau) d\tau$$

1. (a) (a) Compute t * u(t). More generally, compute q(t) * u(t) in terms of q(t).

 $t*u(t)=\int_0^t (t-\tau)u(\tau)d\tau$. Note that for any τ in between 0 and $t,\,u(\tau)=1$, so $t*u(t)=\int_0^t (t-\tau)d\tau=t^2/2$. More generally, $q(t)*u(t)=\int_0^t q(t-\tau)u(\tau)d\tau=\int_0^t q(t-\tau)d\tau$.

(b) Compute u(t) * t. More generally, compute u(t) * q(t) in terms of q(t).

Again, for any τ in between 0 and t, $t-\tau$ is also in between 0 and t, therefore, $u(t)*t=\int_0^t u(t-\tau)\tau d\tau=\int_0^t \tau d\tau=t^2/2$. In general, $u(t)*q(t)=\int_0^t u(t-\tau)q(\tau)d\tau=\int_0^t q(\tau)d\tau$. With the change of variable, i.e., $t-\tau\to\tau$, we see $u(t)*q(t)=\int_0^t q(\tau)d\tau=\int_0^t q(\tau)d\tau=\int_0^t q(t-\tau)d\tau=q(t)*u(t)$.

What we see here is t * u(t) = u(t) * t and q(t) * u(t) = u(t) * q(t). In fact, the convolution operation "*" is commutative. Namely, for any f(t) and g(t), $f * g(t) = \int_0^t f(t-\tau)g(\tau)d\tau = g * f(t)$.

2.What is the differential operator p(D) whose unit impulse response is the unit step function u(t)? In **1(b)** you have computed u(t)*q(t). Is the Assertion true in this case?

We are looking for the differential operator P(D) such that $P(D)u = \delta$. But $Du = \delta$, so p(D) = D. The Assertion in this case becomes $x(t) = u(t) * q(t) = \int_0^t q(\tau)d\tau$ is the solution of Dx = q(t) with the rest initial condition. To verify this, we take the derivative of x(t), which leads to $\dot{x}(t) = \frac{d}{dt}(\int_0^t q(\tau)d\tau) = q(t)$, and moreover, x(0+) = 0. Therefore, x(t) is indeed the solution of Dx = q(t) and it satisfies the rest initial condition.

3. (a) Assume that f(t) is continuous at t = a. What meaning should we give to the product $f(t)\delta(t-a)$?

Consider that $\delta(t-a)$ is zero everywhere except for t=a, so the product $f(t)\delta(t-a)$ is zero everywhere except for t=a. But at t=a, f(t) is simply f(a). Therefore, $f(t)\delta(t-a)$ is again, a delta function at a of "size" f(a). Namely, $f(t)\delta(t-a)=f(a)\delta(t-a)$.

(b) Assume f(t) is continuous, and f(t) vanishes for t < 0. Explain why $f(t) * \delta(t - a) = f(t - a)$ for $a \ge 0$.

 $f(t) * \delta(t-a) = \int_0^t f(t-\tau)\delta(\tau-a)d\tau$. As we just saw in 3(a), the product $f(t-\tau)\delta(\tau-a) = f(t-a)\delta(\tau-a)$, so the integral becomes $\int_0^t f(t-\tau)\delta(\tau-a)d\tau$.

 $a)d au=\int_0^t f(t-a)\delta(\tau-a)d au=f(t-a)\int_0^t \delta(\tau-a)d au.$ Since $\delta(\tau-a)=u'(\tau-a)$, then when $a\geq 0$, $\int_0^t \delta(\tau-a)d au=u(t-a)-u(-a)=1.$ So we have $f(t)*\delta(t-a)=f(t-a).$ When a=0, $f*\delta(t)=f(t)$, so the convolution of f with $\delta(t)$ gets back to f.

4. (a) Verify that $u(t)\frac{1}{\omega_n}\sin(\omega_n t)$ is the unit impulse response for $D^2 + \omega_n^2 I$.

Denote $x(t) = u(t) \frac{1}{\omega_n} \sin(\omega_n t)$. Clearly, when t < 0, x(t) = 0; when t > 0, $x(t) = \frac{1}{\omega_n} \sin(\omega_n t)$, and $Dx = \cos(\omega_n t)$, $D^2x = -\omega_n \sin(\omega_n t)$. So $(D^2 + \omega_n^2 I)x = 0$ when t > 0. Moreover, it's easy to verify that x(0+) = 0 and $\dot{x}(0+) = 1$. So x(t) has the right initial condition at t = 0, so it's the unit impulse response for $D^2 + \omega_n^2 I$.

(b) Find the solution to $\ddot{x} + x = \sin t$ with initial condition $x(0) = \dot{x}(0) = 0$, using the ERF/resonance.

The complex replacement of the equation is $\ddot{z} + z = e^{it}$, and by Resonant ERF, it has the particular solution $z_p = \frac{te^{it}}{2i}$. So the original equation has a particular solution $x_p = Im(z_p) = -\frac{t}{2}\cos t$, and hence the general solution is $x = -\frac{t}{2}\cos t + c_1\cos t + c_2\sin t$. $x(0) = c_1 = 0$, and $\dot{x}(0) = -\frac{1}{2} + c_2 = 0$. So $c_1 = 0$ and $c_2 = \frac{1}{2}$, and the solution is $x = -\frac{t}{2}\cos t + \frac{1}{2}\sin t$.

(c) Compute $\sin t * \sin t$ at $t = 2\pi n$, where n is a positive integer. (Reminder: $\sin^2 t = \frac{1-\cos(2t)}{2}$.)

By the Assertion, $\sin t * \sin t$ should be the solution found in (b). Is the value at $t = 2\pi n$ correct?

 $\sin t * \sin t$ at $2\pi n$ is given by $\int_0^{2\pi n} \sin(2\pi n - \tau) \sin \tau d\tau = -\int_0^{2\pi n} \sin^2 \tau d\tau = \int_0^{2\pi n} \frac{\cos(2\tau) - 1}{2} d\tau$. $\int_0^{2\pi n} \frac{\cos(2\tau)}{2} d\tau = \frac{1}{4} (\sin(4\pi n) - \sin 0) = 0$, so the integral is simply $-\frac{1}{2} \cdot 2\pi n = -\pi n$. Therefore, $\sin t * \sin t$ at $2\pi n$ should be $-\pi n$. But x(t) from (b) at $2\pi n$ takes value $-\frac{2\pi n}{2} \cos(2\pi n) + \frac{1}{2} \sin(2\pi n) = -\pi n$, so it matches what we found here.

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.