18.03 Recitation 17, April 8, 2010

Convolution

Convolution product: $f(t) * g(t) = \int_0^t f(t-\tau)g(\tau) d\tau$

Convention: We form the convolution product only of functions which vanish for t < 0. We may write f(t), but we really mean u(t)f(t).

Assertion: Suppose that w(t) is the unit impulse response for the operator p(D). Let q(t) be a (perhaps generalized) function such that q(t) = 0 for t < 0. Then the solution to p(D)x = q(t) with rest initial conditions is w(t) * q(t).

- **1.** (a) Compute t * u(t). More generally, compute q(t) * u(t) in terms of q(t).
- (b) Compute u(t) * t. More generally, compute u(t) * q(t) in terms of q(t).

Your answers should be related. What general property of the convolution product does this reflect?

- **2.** What is the differential operator p(D) whose unit impulse response is the unit step function u(t)?
- In $\mathbf{1}(\mathbf{b})$ you have computed u(t) * q(t). Is the Assertion true in this case?
- **3.** (a) Assume that f(t) is continuous at t = a. What meaning should we give to the product $f(t)\delta(t-a)$?
- (b) Assume f(t) is continuous, and f(t) vanishes for t < 0. Explain why $f(t) * \delta(t a) = f(t a)$ for $a \ge 0$.

With a = 0, this shows that $\delta(t)$ serves as a "unit" for the convolution product.

- **4.** (a) Verify that $u(t)\frac{1}{\omega_n}\sin(\omega_n t)$ is the unit impulse response for $D^2+\omega_n^2I$.
- (b) Find the solution to $\ddot{x} + x = \sin t$ with initial condition $x(0) = \dot{x}(0) = 0$, using the ERF/resonance.
- (c) Compute $\sin t * \sin t$ at $t = 2\pi n$, where n is a positive integer. (Reminder: $\sin^2 t = \frac{1-\cos(2t)}{2}$.)

By the Assertion, $\sin t * \sin t$ should be the solution found in (b). Is the value at $t = 2\pi n$ correct?

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.