18.03 Recitation 16, April 6, 2010

Step and delta functions, and step and delta responses

1. Let
$$Q(t) = \begin{cases} 0 & \text{for } t < 1\\ 2t - 2 & \text{for } 1 < t < 2\\ 2t - 1 & \text{for } 2 < t < 3\\ 5 & \text{for } 3 < t \end{cases}$$

- (a) Sketch a graph of this function. Is it piecewise smooth?
- (b) Find the generalized derivative q(t) = Q'(t), and sketch it.
- (c) Tell a story which might result in the equation $\dot{x} + kx = q(t)$ with rest initial conditions. (Your choice of k, it might be negative).
- (d) Tell a story which might result in the equation $2\ddot{x} + 4\dot{x} + 4x = q(t)$ with rest initial conditions.
- Q(t) is piecewise smooth, and its generalized derivative is $q(t) = 2u(t-1) + \delta(t-2) 2u(t-3)$. The graph of q(t) has a horizontal line q=0 away from the interval [1, 3]. Inside (1,3), the graph takes the value 2, except at t=2, where we have a harpoon labeled by 1.

Typical story for $\dot{x} + kx = q(t)$: x describes the balance of a bank account which grows through interest at rate k, and q represents the rate of savings. Before time 1 the account balance is zero. Between time 1 and time 3, the owner of the account has a job and steadily puts yearly 2 units of wealth into the bank account. At time 2, the owner wins a lottery, and deposits one unit of wealth.

Typical story for $2\ddot{x} + 4\dot{x} + 4x = q(t)$: $2\ddot{x} + 4\dot{x} + 4x$ describes a spring-mass-dashpot system (m=2, b=4, k=4) driven directly by the external force q(t). Before time 1, the force is zero, the spring and the dashpot are relaxed and the mass is still. Between time 1 and time 3, the force is steadily 2 units. At time 2, a shock of one unit hits the system through the force.

2. Find the unit step and unit impulse responses for the operator 2D + I, and graph them.

The unit step response is the continuous solution that is zero for t < 0, a solution of $2\dot{x} + x = 1$ for t > 0. The general solution to the equation for t > 0 can be found by adding the general homogeneous solution to the particular solution $x_p = 1$. $2\dot{x} + x = 0$ has the general solution $ce^{-\frac{t}{2}}$, so the general solution of $2\dot{x} + x = 1$ is $x = 1 + ce^{-\frac{t}{2}}$. By the continuity condition at zero, x approaches zero as t approaches zero from above, so t = -1. Thus, the unit step response is $t = 1 - e^{-\frac{t}{2}}$ for $t \geq 0$ and t = 0 for t < 0.

The unit impulse response is the solution that is zero for x < 0, a solution of $2\dot{x} + x = 0$ for x > 0, and with x approaching 1/2 as t approaches zero from above. Or equivalently, the unit impulse response is the derivative of the unit step response, so $x = \frac{1}{2}e^{-\frac{t}{2}}$ for t > 0 and x = 0 for t < 0.

3. Find the unit impulse response for the operator $D^2 + 2D$, and graph it.

We first find the unit step response for that operator. The unit step response is the continous solution that is zero for x < 0, a solution to the equation $\ddot{x} + 2\dot{x} = 1$ for x > 0, and with continuous first derivative at zero. The particular solution to the equation for t > 0 can be found by undetermined coefficient and it's $x_p = t/2$. The homogeneous solutions have the form $c_1e^{-2t} + c_2$. So the general solution to $\ddot{x} + 2\dot{x} = 1$ is $x = t/2 + c_1e^{-2t} + c_2$. By continuity at zero, $c_1 + c_2 = 0$, and by continuity of the first derivative $1/2 - 2c_1 = 0$, so $c_1 = 1/4$, $c_2 = -1/4$. Thus, the unit step response is $x = t/2 + (e^{-2t} - 1)/4$ for $t \ge 0$ and x = 0 for t < 0.

The unit impulse response is the derivative of the unit step response, so it's $x = (1 - e^{-2t})/2$ for $t \ge 0$ and x = 0 for t < 0.

4. From your answer to **3.**, find the solution to $\ddot{x} + 2\dot{x} = 3\delta(t-1)$ with rest initial conditions.

Using time invariance, we find that a solution to $\ddot{x} + 2\dot{x} = 3\delta(t-1)$ is $x = \frac{3}{2}(1 - e^2e^{-2t})$ when $t \ge 1$ and x = 0 when $0 \le t < 1$, and it satisfies the rest initial conditions.

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.