## Recitation 13, March 18, 2010

## Fourier Series: Introduction

1. What is the general solution to  $\ddot{x} + \omega_n^2 x = 0$ ? [Quick!]

The characteristic polynomial is  $p(s) = s^2 + \omega_n^2$ , with roots  $\pm i\omega_n$ . The general complex solution is  $ae^{i\omega_n t} + be^{-i\omega_n t}$ , and the general real solution is  $x = c_1 \cos(\omega_n t) + c_2 \sin(\omega_n t)$ .

**2.** Discuss why (as long as  $\omega \neq \pm \omega_n$ )

$$\ddot{x} + \omega_n^2 x = a \cos(\omega t)$$
 has solution  $x_p = a \frac{\cos(\omega t)}{\omega_n^2 - \omega^2}$ 

$$\ddot{x} + \omega_n^2 x = b \sin(\omega t)$$
 has solution  $x_p = b \frac{\sin(\omega t)}{\omega_n^2 - \omega^2}$ 

Assume  $\omega \neq \omega_n$ , then the first equation is the real part of the equation  $\ddot{z} + \omega_n^2 z = a e^{i\omega t}$ . By the exponential response formula,  $z = \frac{a}{\omega_n^2 - \omega^2} e^{i\omega t}$ . Taking the real part yields solution  $x_p = a \frac{\cos(\omega t)}{\omega_n^2 - \omega^2}$ . Similarly, the second equation is the imaginary part of the equation  $\ddot{z} + \omega_n^2 z = b e^{i\omega t}$ , which has a solution  $z = \frac{b}{\omega_n^2 - \omega^2} e^{i\omega t}$ . Taking the imaginary part yields  $x_p = b \frac{\sin(\omega t)}{\omega_n^2 - \omega^2}$ .

3. What about  $\ddot{x} + \omega_n^2 x = \cos(\omega_n t)$ ? What is a particular solution? What is the general solution? Are there any solutions x(t) such that  $|x(t)| < 10^6$  for all t? Are there any periodic solutions?

Assume  $\omega_n \neq 0$ , otherwise the equation becomes trivial. Again we take the complex replacement of the equation and get  $\ddot{z} + \omega_n^2 z = e^{i\omega_n t}$ . Since  $p(i\omega_n) = 0$ ,  $p'(i\omega_n) = 2i\omega_n \neq 0$ , then by RERF, the particular solution is  $z_p(t) = \frac{te^{i\omega_n t}}{2i\omega_n}$ . Taking the real part yields  $x_p(t) = \frac{t\sin(\omega_n t)}{2\omega_n}$ . The solution of the homogeneous equation is given by problem 1, so the general solution of this equation is  $x(t) = \frac{t\sin(\omega_n t)}{2\omega_n} + c_1\cos(\omega_n t) + c_2\sin(\omega_n t)$ .

Due to the factor t in  $x_p$ , any solution x(t) will exit the range  $(-10^6, 10^6)$  when t is large enough. To see this, consider  $t_k = \frac{2k+1/2}{\omega_n}\pi$  for  $k \in \mathbb{N}$ . Then  $\sin(\omega_n t_k) = \sin(2k\pi + \pi/2) = 1$  and  $\cos(\omega_n t_k) = \cos(2k\pi + \pi/2) = 0$ , so  $x(t_k) = \frac{2k+1/2}{2\omega_n^2}\pi + c_2$ . Therefore for any  $c_2$ , we can always choose sufficiently large integer k, such that  $x(t_k) = \frac{2k+1/2}{2\omega_n^2}\pi + c_2 > 10^6$ . So there will be NO solution x(t) such that  $|x(t)| < 10^6$  for all t.

 $c_1 \cos(\omega_n t) + c_2 \sin(\omega_n t)$  is a periodic function with period  $2\pi/\omega_n$ , but  $x_p(t) = \frac{t \sin(\omega_n t)}{2\omega_n}$  is not periodic since the magnitude increases as t increases. So the

general solution  $x(t) = x_p(t) + c_1 \cos(\omega_n t) + c_2 \sin(\omega_n t)$  is not periodic. There is NO periodic solution.

**4.** On the same set of axes, sketch graphs of  $\sin t$ ,  $\sin(2t)$ . Then sketch the graph of  $f(t) = \sin t + \sin(2t)$ . Some pointers: f(t) is easy to evaluate when one of the terms is zero. What is the derivative at points where both terms are zero? This information should be enough to let you make a rough sketch. What are the periods of these three functions?

 $\sin t$  has period  $2\pi$ , and  $\sin(2t)$  has period  $\pi$ . Both  $\sin t$  and  $\sin(2t)$  will vanish at  $t = k\pi$  for  $k \in \mathbb{Z}$ .  $f'(t) = \cos t + 2\cos(2t)$ , so at those points,  $f'(k\pi) = (-1)^k + 2 = \begin{cases} 1, & k \ odd, \\ 3, & k \ even. \end{cases}$  f(t) is a linear combination of  $\sin t$  and  $\sin(2t)$ , so its period is the least common multiple of the periods of  $\sin t$  and  $\sin(2t)$ , i.e.,  $2\pi$ .

5. For what values of  $\omega_n$  is there a periodic solution to the equation

$$\ddot{x} + \omega_n^2 x = b_1 \sin t + b_2 \sin(2t)$$

(where  $b_1$  and  $b_2$  are nonzero)? Name one if it exists.

Consider the complex replacement of the equation  $\ddot{z} + \omega_n^2 z = b_1 e^{it} + b_2 e^{2it}$ . The characteristic polynomial is  $p(s) = s^2 + \omega_n^2$ . By linearity, a solution to this equation is given by the sum of a solution to  $\ddot{z} + \omega_n^2 z = b_1 e^{it}$  and a solution to  $\ddot{z} + \omega_n^2 z = b_2 e^{2it}$ . When  $\omega_n \neq 1$ ,  $\ddot{z} + \omega_n^2 z = b_1 e^{it}$  has the solution  $b_1 e^{it} / (\omega_n^2 - 1)$ ; when  $\omega_n \neq 2$ ,  $\ddot{z} + \omega_n^2 z = b_2 e^{2it}$  has the solution  $b_2 e^{2it} / (\omega_n^2 - 4)$ . So if both  $\omega_n \neq 1$  and  $\omega_n \neq 2$  are satisfied, a complex solution of the original equation will be  $\frac{b_1 e^{it}}{\omega_n^2 - 1} + \frac{b_2 e^{2it}}{\omega_n^2 - 4}$ . Taking the imaginary part yields  $x_p = \frac{b_1 \sin t}{\omega_n^2 - 1} + \frac{b_2 \sin(2t)}{\omega_n^2 - 4}$ , which is a periodic solution with period  $2\pi$ .

**6.** (very tricky) For what values of  $\omega$  is  $\sin t + \sin(\omega t)$  periodic? And the periods?

When  $\omega=0$ , the function is simply  $\sin t$  which is periodic with period  $2\pi$ . Now assume  $\omega\neq 0$ , then  $\sin{(\omega t)}$  is periodic with period  $2\pi/\omega$ . Since the period of  $\sin t$  is  $2\pi$ , then if  $\sin t + \sin{(\omega t)}$  is about to be periodic, its period must be  $2k\pi$  for some positive integer  $k\in\mathbb{N}$ , which also has to be an integer multiple of the period of  $\sin{(\omega t)}$ . Therefore if  $\sin t + \sin{(\omega t)}$  is periodic, then there exist positive  $k\in\mathbb{N}$  and positive  $n\in\mathbb{N}$ , such that  $2k\pi=n\frac{2\pi}{\omega}$ , i.e.,  $\omega=n/k$ . On the other hand, for any choice of a pair of positive integers k and n, set  $\omega=n/k$ , then  $\sin t+\sin{(\omega t)}$  will be periodic with period  $\frac{2k\pi}{(k,n)}$ , where (k,n) denotes the greatest common divisor of k and n.

## MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.