Recitation 11, March 11, 2010

Frequency Response

This project will be much more meaningful if it is accompanied by the Mathlet Amplitude and Phase: Second order, IV (available at http://math.mit.edu/daimp/). This illustrates the second order mass/spring/dashpot system driven by a force $F_{\rm ext}$ acting directly on the mass: $m\ddot{x} + b\dot{x} + kx = F_{\rm ext}$. So the input signal is $F_{\rm ext}$ and the system response is x. We're interested in sinusoidal input signal, $F_{\rm ext}(t) = A\cos(\omega t)$, and in the steady state, sinusoidal system response, $x_p(t) = gA\cos(\omega t - \phi)$. Here g is the gain of the system and ϕ is the phase lag. Both depend upon ω , and we will consider how. We might as well take A=1, so the amplitude of the system response equals the gain.

Take m = 1, $b = \frac{1}{4}$, and k = 2.

- 1. Compute the complex gain $H(\omega)$ of this system. (This means: make the complex replacement $F_{\rm cx} = e^{i\omega t}$, and express the exponential system response z_p as a complex multiple of $F_{\rm cx}$: $z_p = H(\omega)F_{\rm cx}$.)
- **2.** Write down the expression for the gain $g(\omega) = |H(\omega)|$. What is the amplitude of the system response when $\omega = 1$? (You can check your answer using the applet.)
- **3.** What is the resonant circular frequency ω_r ? (Hint: minimize the square of the denominator.)
- **4.** It appears that the phase lag is approximately $\frac{\pi}{2}$ at the resonant circular frequency. Is that correct? That is, at what frequency is the phase lag equal to one quarter cycle?
- **5.** At what circular frequency is the phase lag equal to $\frac{\pi}{4}$? How about $\frac{3\pi}{4}$?
- **6.** New project: Find a solution of $\ddot{x} + 3\dot{x} + 2x = te^{-t}$.

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.