Recitation 9, March 4, 2010

Exponential and sinusoidal input signals

- 1. Find A so that $A\sin(3t)$ is a solution of $\ddot{x} + 4x = \sin(3t)$. What is the general solution?
- **2.** For $\omega \geq 0$, find A such that $A\cos(\omega t)$ is a solution of $\ddot{x} + 4x = \cos(\omega t)$. Graph the input signal $\cos(\omega t)$ and the solution $A\cos(\omega t)$ for $\omega = 0$, $\omega = 1$, and $\omega = 3$.

Sketch a graph of A as a function of ω , as ω ranges from 0 to 5. Where does resonance occur? What is the significance of the sign of A?

- **3.** Find an exponential solution of $\frac{d^4x}{dt^4} x = e^{-2t}$.
- **4.** Find a sinusoidal solution of $\frac{d^4x}{dt^4} x = \cos(2t)$.
- 5. Find the general solution of the differential equations in (3) and (4).

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.