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9. Normalization of solutions 

9.1. Initial conditions. The general solution of any homogeneous lin­
ear second order ODE 

(1) ẍ + p(t)ẋ + q(t)x = 0 

has the form c1x1 + c2x2, where c1 and c2 are constants. The solutions 
x1, x2 are often called “basic,” but this is a poorly chosen name since 
it is important to understand that there is absolutely nothing special 
about the solutions x1, x2 in this formula, beyond the fact that neither 
is a multiple of the other. 

For example, the ODE ẍ = 0 has general solution at + b. We can 
take x1 = t and x2 = 1 as basic solutions, and have a tendency to do 
this or else list them in the reverse order, so x1 = 1 and x2 = t. But 
equally well we could take a pretty randomly chosen pair of polynomials 
of degree at most one, such as x1 = 4 + t and x2 = 3 − 2t, as basic 
solutions. This is because for any choice of a and b we can solve for c1 

and c2 in at + b = c1x1 + c2x2. The only requirement is that neither 
solution is a multiple of the other. This condition is expressed by saying 
that the pair {x1, x2} is linearly independent. 

Given a basic pair of solutions, x1, x2, there is a solution of the initial 
value problem with x(t0) = a, ẋ(t0) = b, of the form x = c1x1 + c2x2. 
The constants c1 and c2 satisfy 

a = x(t0) = c1x1(t0) + c2x2(t0) 

b = ẋ(t0) = c1ẋ1(t0) + c2ẋ2(t0). 

For instance, the ODE ẍ− x = 0 has exponential solutions et and e−t , 
which we can take as x1, x2. The initial conditions x(0) = 2, ẋ(0) = 4 
then lead to the solution x = c1e

t + c2e
−t as long as c1, c2 satisfy 

2 = x(0) = c1e 0 + c2e −0 = c1 + c2, 

4 = ẋ(0) = c1e 0 + c2(−e −0) = c1 − c2, 

This pair of linear equations has the solution c1 = 3, c2 = −1, so 
x = 3et − e−t . 

9.2. Normalized solutions. Very often you will have to solve the 
same differential equation subject to several different initial conditions. 
It turns out that one can solve for just two well chosen initial conditions, 
and then the solution to any other IVP is instantly available. Here’s 
how. 
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Definition 9.2.1. A pair of solutions x1, x2 of (1) is normalized at t0 

if 
x1(t0) = 1, x2(t0) = 0, 

ẋ1(t0) = 0, ẋ2(t0) = 1. 

By existence and uniqueness of solutions with given initial condi­
tions, there is always exactly one pair of solutions which is normalized 
at t0. 

For example, the solutions of ẍ = 0 which are normalized at 0 are 
x1 = 1, x2 = t. To normalize at t0 = 1, we must find solutions— 
polynomials of the form at + b—with the right values and derivatives 
at t = 1. These are x1 = 1, x2 = t − 1. 

For another example, the “harmonic oscillator” 

ẍ + �2 x = 0 n

has basic solutions cos(�nt) and sin(�nt). They are normalized at 0 
d 

only if �n = 1, since sin(�nt) = �n cos(�nt) has value �n at t = 0,
dt 

rather than value 1. We can fix this (as long as �n = 0) by dividing by ∈
�n: so 

(2) cos(�nt) , �n 
−1 sin(�nt) 

is the pair of solutions to ẍ + �n
2x = 0 which is normalized at t0 = 0. 

Here is another example. The equation ẍ − x = 0 has linearly inde­
pendent solutions et, e−t, but these are not normalized at any t0 (for 
example because neither is ever zero). To find x1 in a pair of solutions 
normalized at t0 = 0, we take x1 = aet + be−t and find a, b such that 
x1(0) = 1 and ẋ1(0) = 0. Since ẋ1 = aet − be−t, this leads to the pair 
of equations a + b = 1, a − b = 0, with solution a = b = 1/2. To find 
x2 = aet + be−t x2(0) = 0, ẋ2(0) = 1 imply a + b = 0, a − b = 1 or 
a = 1/2, b = −1/2. Thus our normalized solutions x1 and x2 are the 
hyperbolic sine and cosine functions: 

cosh t = 
et + e−t 

, sinh t = 
et − e−t 

. 
2 2 

These functions are important precisely because they occur as nor­
malized solutions of ẍ − x = 0. 

Normalized solutions are always linearly independent: x1 can’t be a 
multiple of x2 because x1(t0) = 0 while x2(t0) = 0, and x2 can’t be a ∈
multiple of x1 because ẋ2(t0) = 0 while ẋ1(t0) = 0. ∈

Now suppose we wish to solve (1) with the general initial conditions. 
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If x1 and x2 are a pair of solutions normalized at t0, then the 
solution x with x(t0) = a, ẋ(t0) = b is 

x = ax1 + bx2 . 

The constants of integration are the initial conditions. 

If I want x such that ẍ + x = 0 and x(0) = 3, ẋ(0) = 2, for example, 
we have x = 3 cos t + 2 sin t. Or, for an other example, the solution of 
ẍ − x = 0 for which x(0) = 2 and ẋ(0) = 4 is x = 2 cosh(t) + 4 sinh(t). 
You can check that this is the same as the solution given above. 

Exercise 9.2.2. Check the identity 

cosh2 t − sinh2 t = 1 . 

9.3. ZSR and ZIR. There is an interesting way to decompose the 
solution of a linear initial value problem which is appropriate to the 
inhomogeneous case and which arises in the system/signal approach. 
Two distinguishable bits of data determine the choice of solution: the 
initial condition, and the input signal. 

Suppose we are studying the initial value problem 

(3) ẍ + p(t)ẋ + q(t)x = f(t) , x(t0) = x0 , ẋ(t0) = ẋ0 . 

There are two related initial value problems to consider: 

[ZSR] The same ODE but with rest initial conditions (or “zero state”): 

ẍ + p(t)ẋ + q(t)x = f(t) , x(t0) = 0 , ẋ(t0) = 0 . 

Its solution is called the Zero State Response or ZSR. It depends 
entirely on the input signal, and assumes zero initial conditions. We’ll 
write xf for it, using the notation for the input signal as subscript. 

[ZIR] The associated homogeneous ODE with the given initial condi­
tions: 

ẍ + p(t)ẋ + q(t)x = 0 , x(t0) = x0 , ẋ(t0) = ẋ0 . 

Its solution is called the the Zero Input Response, or ZIR. It de­
pends entirely on the initial conditions, and assumes null input signal. 
We’ll write xh for it, where h indicates “homogeneous.” 

By the superposition principle, the solution to (3) is precisely 

x = xf + xh. 

The solution to the initial value problem (3) is the sum of a ZSR and 
a ZIR, in exactly one way. 
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Example 9.3.1. Drive a harmonic oscillator with a sinusoidal signal: 

ẍ + �2 x = a cos(�t)n

(so f(t) = a cos(�t)) and specify initial conditions x(0) = x0, ẋ(0) = 
ẋ0. Assume that the system is not in resonance with the signal, so 
� = �n. Then the Exponential Response Formula (Section 10) shows ∈
that the general solution is 

cos(�t) 
x = a + b cos(�nt) + c sin(�nt)

�n 
2 − �2 

where b and c are constants of integration. To find the ZSR we need 
to find ẋ, and then arrange the constants of integration so that both 
x(0) = 0 and ẋ(0) = 0. Differentiate to see 

sin(�t) 
ẋ = −a� 

n − �2 
− b�n sin(�nt) + c�n cos(�nt)

�2 

so ẋ(0) = c�n, which can be made zero by setting c = 0. Then x(0) = 
a/(�n 

2 − �2) + b, so b = −a/(�n 
2 − �2), and the ZSR is 

cos(�t) − cos(�nt) 
xf = a . 

�n 
2 − �2 

The ZIR is 
xh = b cos(�nt) + c sin(�nt) 

where this time b and c are chosen so that xh(0) = x0 and ẋh(0) = ẋ0. 
Thus (using (2) above) 

sin(�nt) 
xh = x0 cos(�nt) + ẋ0 . 

�n 

Example 9.3.2. The same works for linear equations of any order. 
For example, the solution to the bank account equation (Section 2) 

ẋ − Ix = c , x(0) = x0, 

(where we’ll take the interest rate I and the rate of deposit c to be 
constant, and t0 = 0) can be written as 

c 
x = (e It − 1) + x0e It . 

I 
The first term is the ZSR, depending on c and taking the value 0 at 
t = 0. The second term is the ZIR, a solution to the homogeneous 
equation depending solely on x0. 
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