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6. The complex exponential 

The exponential function is a basic building block for solutions of 
ODEs. Complex numbers expand the scope of the exponential function, 
and bring trigonometric functions under its sway. 

6.1. Exponential solutions. The function et is defined to be the so­
lution of the initial value problem ẋ = x, x(0) = 1. More generally, the 
chain rule implies the 

Exponential Principle: 

For any constant w, ewt is the solution of ẋ = wx, x(0) = 1. 

Now look at a more general constant coefficient homogeneous linear 
ODE, such as the second order equation 

(1)	 ẍ + cẋ + kx = 0. 

It turns out that there is always a solution of (1) of the form x = ert , 
for an appropriate constant r. 

To see what r should be, take x = ert for an as yet to be determined 
constant r, substitute it into (1), and apply the Exponential Principle. 
We find 

(r 2 + cr + k)e rt = 0. 

Cancel the exponential (which, conveniently, can never be zero), and 
discover that r must be a root of the polynomial p(s) = s2 + cs + k. 
This is the characteristic polynomial of the equation. See Section 10 
for more about this. The characteristic polynomial of the linear 
equation with constant coefficients 

dnx dx 
an + + a1 + a0x = 0 

dtn 
· · · 

dt 

is 

p(s) = ans n + + a1s + a0 .· · · 
Its roots are the characteristic roots of the equation. We have dis­
covered the 

Characteristic Roots Principle: 

ert is a solution of a constant coefficient homogeneous linear 
(2)	 differential equation exactly when r is a root of the characteristic 

polynomial. 
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Since most quadratic polynomials have two distinct roots, this nor­
mally gives us two linearly independent solutions, er1t and er2t . The 
general solution is then the linear combination c1e

r1t + c2e
r2t . 

This is fine if the roots are real, but suppose we have the equation 

(3) ẍ + 2ẋ + 2x = 0 

for example. By the quadratic formula, the roots of the characteristic 
polynomial s2 + 2s + 2 are the complex conjugate pair −1 ± i. We had 
better figure out what is meant by e(−1+i)t, for our use of exponentials 
as solutions to work. 

6.2. The complex exponential. We don’t yet have a definition of 
eit . Let’s hope that we can define it so that the Exponential Principle 
holds. This means that it should be the solution of the initial value 
problem 

ż = iz , z(0) = 1 . 

We will probably have to allow it to be a complex valued function, in 
view of the i in the equation. In fact, I can produce such a function: 

z = cos t + i sin t . 

Check: ż = − sin t + i cos t, while iz = i(cos t + i sin t) = i cos t − sin t, 
using i2 = −1; and z(0) = 1 since cos(0) = 1 and sin(0) = 0. 

We have now justified the following definition, which is known as 
Euler’s formula: 

(4) eit = cos t + i sin t 

In this formula, the left hand side is by definition the solution to ż = iz 
such that z(0) = 1. The right hand side writes this function in more 
familiar terms. 

We can reverse this process as well, and express the trigonometric 
functions in terms of the exponential function. First replace t by −t in 
(4) to see that 

−it = eite . 

Then put z = eit into the formulas (5.1) to see that 

eit + e−it eit − e−it 

(5) cos t = , sin t = 
2 2i 

We can express the solution to


ż = (a + bi)z , z(0) = 1
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in familiar terms as well: I leave it to you to check that it is 

z = e at(cos(bt) + i sin(bt)). 

We have discovered what ewt must be, if the Exponential principle is 
to hold true, for any complex constant w = a + bi: 

(6) e(a+bi)t = eat(cos bt + i sin bt) 

Let’s return to the example (3). The root r1 = −1 + i leads to 

e(−1+i)t = e −t(cos t + i sin t) 

and r2 = −1 − i leads to 

e(−1−i)t = e −t(cos t − i sin t) . 

We probably really wanted a real solution to (3), however. For this 
we have the 

Reality Principle: 

If z is a solution to a homogeneous linear equation with real 
(7) 

coefficients, then the real and imaginary parts of z are too. 

We’ll explain why this is in a minute, but first let’s look at our 
example (3). The real part of e(−1+i)t is e−t cos t, and the imaginary 
part is e−t sin t. Both are solutions to (3). 

In practice, you should just use the following consequence of what 
we’ve done: 

Real solutions from complex roots: 

If r1 = a + bi is a root of the characteristic polynomial of a 
homogeneous linear ODE whose coefficients are constant and 
real, then 

e at cos(bt) and e at sin(bt)

are solutions. If b = 0, they are independent solutions.
∈

To see why the Reality Principle holds, suppose z is a solution to a 
homogeneous linear equation with real coefficients, say 

(8) z̈ + pż + qz = 0 

for example. Let’s write x for the real part of z and y for the imaginary 
part of z, so z = x + iy. Since q is real, 

Re (qz) = qx and Im (qz) = qy. 
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Derivatives are computed by differentiating real and imaginary parts 
separately, so (since p is also real) 

Re (pż) = pẋ and Im (pż) = py. ˙

Finally, 
Re z̈ = ẍ and Im z̈ = ÿ

so when we break down (8) into real and imaginary parts we get 

ẍ + pẋ + qx = 0 , ÿ + pẏ + qy = 0 

—that is, x and y are solutions of the same equation (8). 

6.3. Polar coordinates. The expression 

e it = cos t + i sin t 

parametrizes the unit circle in the complex plane. As t increases from 
0 to 2ν, the complex number cos t + i sin t moves once counterclock­
wise around the circle. The parameter t is just the radian measure 
counterclockwise from the positive real axis. 

More generally, 

z(t) = e(a+bi)t = e at(cos(bt) + i sin(bt)). 

parametrizes a curve in the complex plane. What is it? 

Begin by looking at some values of t. When t = 0 we get z(0) = 1 
no matter what a and b are. When t = 1 we get 

(9) e a+bi = e a(cos b + i sin b). 

The numbers a and b determine the polar coordinates of this point in 
the complex plane. The absolute value (=magnitude) of cos(b)+i sin(b) 
is 1, so (since |wz| = |w||z| and eat > 0) 

a+bi a |e | = e . 

This is the radial distance from the origin. 

The polar angle—the angle measured counterclockwise from the pos­
itive x axis—is called the argument of the complex number z, and is 
written Argz. According to (9), the argument of ea+bi is simply b. As 
usual, the argument of a complex number is only well defined up to 
adding multiples of 2ν. 

The other polar coordinate—the distance from the origin—is the 
modulus or absolute value of the complex number z, and is written 
|z|. According to (9), the modulus of ea+bi is ea . 
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Any complex number except for zero can be expressed as ea+bi for 
some a, b. You just need to know a polar expression for the point in 
the plane. 

Exercise 6.3.1. Find expressions of 1, i, 1+ i, (1 + 
≤

3i)/2, as complex 
exponentials. 

For general t, 

(10) e(a+bi)t = e at(cos(bt) + i sin(bt)) 

parametrizes a spiral (at least when b = 0). If a > 0, it runs away from ∈
the origin, exponentially, while winding around the origin (counter­
clockwise if b > 0, clockwise if b < 0). If a < 0, it decays exponentially 
towards the origin, while winding around the origin. Figure 3 shows a 
picture of the curve parametrized by e(1+2αi)t . 
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Figure 3. The spiral z = e(1+2αi)t 

If a = 0 equation (10) parametrizes a circle. If b = 0, the curve lies 
on the positive real axis. 

6.4. Multiplication. Multiplication of complex numbers is expressed 
very beautifully in these polar terms. We already know that 

(11) Magnitudes Multiply: wz = .| | |w||z|

To understand what happens to arguments we have to think about 
the product eres, where r and s are two complex numbers. This is 
a major test of the reasonableness of our definition of the complex 
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exponential, since we know what this product ought to be (and what 
it is for r and s real). It turns out that the notation is well chosen: 

Exponential Law: 

(12) For any complex numbers r and s, er+s = eres 

This fact comes out of the uniqueness of solutions of ODEs. To get 
an ODE, let’s put t into the picture: we claim that 

(13) e r+st = e r e st . 

If we can show this, then the Exponential Law as stated is the case 
t = 1. Differentiate each side of (13), using the chain rule for the left 
hand side and the product rule for the right hand side: 

d
e r+st = 

d(r + st) 
e r+st = se r+st ,

d 
(e r e st) = e r se st . 

dt dt dt
· 

Both sides of (13) thus satisfy the IVP 

ż = sz , z(0) = e r , 

so they are equal. 

In particular, we can let r = i∂ and s = iλ: 

(14) e i� e iω = e i(�+ω). 

In terms of polar coordinates, this says that 

(15) Angles Add: Arg(wz) = Arg(w) + Arg(z). 

Exercise 6.4.1. Compute ((1+
≤

3i)/2)3 and (1+i)4 afresh using these 
polar considerations. 

Exercise 6.4.2. Derive the addition laws for cosine and sine from 
Euler’s formula and (14). Understand this exercise and you’ll never 
have to remember those formulas again. 

6.5. Roots of unity and other numbers. The polar expression of 
multiplication is useful in finding roots of complex numbers. Begin with 
the sixth roots of 1, for example. We are looking for complex numbers 
z such that z6 = 1. Since moduli multiply, z 6 = z6 = 1 = 1, and | | | | | |
since moduli are nonnegative this forces z = 1: all the sixth roots of | |
1 are on the unit circle. Arguments add, so the argument of a sixth 
root of 1 is an angle ζ so that 6ζ is a multiple of 2ν (which are the 
angles giving 1). Up to addition of multiples of 2ν there are six such 
angles: 0, ν/3, 2ν/3, ν, 4ν/3, and 5ν/3. The resulting points on the 
unit circle divide it into six equal arcs. From this and some geometry 
or trigonometry it’s easy to write down the roots as a + bi: ±1 and 
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(±1 ±
≤

3i)/2. In general, the nth roots of 1 break the circle evenly 
into n parts. 

Exercise 6.5.1. Write down the eighth roots of 1 in the form a + bi. 

Now let’s take roots of numbers other than 1. Start by finding a 
single nth root z of the complex number w = reiβ (where r is a positive 

nreal number). Since magnitudes multiply, |z| = 
≤

r. Since angles add, 
one choice for the argument of z is ζ/n: one nth of the way up from the 
positive real axis. Thus for example one square root of 4i is the complex 
number with magnitude 2 and argument ν/4, which is 

≤
2(1 + i). To 

get all the nth roots of w notice that you can multiply one by any nth 
root of 1 and get another nth root of w. Angles add and magnitudes 
multiply, so the effect of this is just to add a multiple of 2ν/n to the 
angle of the first root we found. There are n distinct nth roots of any 
nonzero complex number w , and they divide the circle with center 0 

n

| |
and radius 

≤
r evenly into n arcs. 

Exercise 6.5.2. Find all the cube roots of −8. Find all the sixth roots 
of −i/64. 

We can use our ability to find complex roots to solve more general 
polynomial equations. 

Exercise 6.5.3. Find all the roots of the polynomials x3 + 1, ix2 + x + 
(1 + i), and x4 − 2x2 + 1. 
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