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2. Modeling by first order linear ODEs 

2.1. The savings account model. Modeling a savings account gives 
a good way to visualize the significance of many of the features of a 
general first order linear ordinary differential equation. 

Write x(t) for the number of dollars in the account at time t. It 
accrues interest at an interest rate I. This means that at the end of an 
interest period (say �t years—perhaps �t = 1/12, or �t = 1/365) the 
bank adds I x(t) �t dollars to your account: · · 

x(t + �t) = x(t) + Ix(t)�t . 

I has units (years)−1 . Unlike bankers, mathematicians like to take 
things to the limit: rewrite our equation as 

x(t + �t) − x(t)
= Ix(t) ,

�t 

and suppose that the interest period is made to get smaller and smaller. 
In the limit as �t � 0, we get 

ẋ = Ix 

—a differential equation. 

In this computation, there was no assumption that the interest rate 
was constant in time; it could well be a function of time, I(t). In fact 
it could have been a function of both time and the existing balance, 
I(x, t). Banks often do make such a dependence—you get a better in­
terest rate if you have a bigger bank account. If x is involved, however, 
the equation is no longer “linear,” and we will not consider that case 
further here. 

Now suppose we make contributions to this savings account. We’ll 
record this by giving the rate of savings, q. This rate has units dollars 
per year, so if you contribute every month then the monthly payments 
will be q �t with �t = 1/12. This payment also adds to your account, 
so, when we divide by �t and take the limit, we get 

ẋ = Ix + q. 

Once again, your rate of payment may not be constant in time; we 
might have a function q(t). Also, you may withdraw money from the 
bank, at some rate measured in dollars per year; this will contribute 
a negative term to q(t), and exert a downward pressure on your bank 
account. 
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What we have, then, is the general first order linear ODE: 

(1) ẋ − I(t)x = q(t). 

2.2. Linear insulation. Here is another example of a linear ODE. The 
linear model here is not as precise as in the bank account example. 

A cooler insulates my lunchtime rootbeer against the warmth of the 
day, but ultimately heat penetrates. Let’s see how you might come up 
with a mathematical model for this process. You can jump right to 
(2) if you want, but I would like to spend a minute talking about how 
one might get there, so that you can carry out the analogous process 
to model other situations. 

The first thing to do is to identify relevant parameters and give them 
names. Let’s write t for the time variable, x(t) for the temperature 
inside the cooler, and y(t) for the temperature outside. 

Let’s assume (a) that the insulating properties of the cooler don’t 
change over time—we’re not going to watch this process for so long that 
the aging of the cooler itself becomes important! These insulating prop­
erties probably do depend upon the inside and outside temperatures 
themselves. Insulation affects the rate of change of the temperature: 
the rate of change at time t of temperature inside depends upon the 
temperatures in side and outside at time t. This gives us a first order 
differential equation of the form 

ẋ = F (x, y) 

Time for the next simplifying assumption: (b) that this rate of 
change depends only on the difference y − x between the temperatures, 
and not on the temperatures themselves. This means that 

ẋ = f(y − x) 

for some function f of one variable. If the temperature inside the cooler 
equals the temperature outside, we expect no change. This means that 
f(0) = 0. 

Now, any reasonable function has a “tangent line approximation,” 
and since f(0) = 0 we have 

f(z) √ kz . 

When z is fairly small, f(z) is fairly close to kz. (From calculus you | |
know that k = f →(0), but we won’t use that here.) When we replace 
f(y − x) by k(y − x) in the differential equation, we are “linearizing” 
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the equation. We get the ODE 

ẋ = k(y − x) , 

which is a linear equation (first order, inhomogeneous, constant coef­
ficient). The new assumption we are making, in justifying this final 
simplification, is that (c) we will only use the equation when z = y − x 
is reasonably small—small enough so that the tangent line approxima­
tion is reasonably good. 

We can write this equation as 

(2) ẋ + kx = ky. 

The system—the cooler—is represented by the left hand side, and 
the input signal—the outside temperature—is represented by the right 
hand side. This is Newton’s law of cooling. 

The constant k is the coupling constant mediating between the 
two temperatures. It will be large if the insulation is poor, and small 
if it’s good. If the insulation is perfect, then k = 0. The factor of k on 
the right might seem odd, but it you can see that it is forced on us by 
checking units: the left hand side is measured in degrees per hour, so 
k is measured in units of (hours)−1 . 

We can see some general features of insulating behavior from this 
equation. For example, the times at which the inside and outside tem­
peratures coincide are the times at which the inside temperature is at 
a critical point: 

(3) ẋ(t1) = 0 exactly when x(t1) = y(t1). 

2.3. System, signal, system response. A first order linear ODE is 
in standard form when it’s written as 

(4) ẋ + p(t)x = q(t). 

In the bank account example, p(t) = −I(t). This way of writing it 
reflects a useful “systems and signals” perspective on differential equa­
tions, one which you should develop. The left hand side of (4) describes 
the system—the bank, in this instance. Operating without outside in­
fluence (that is, without contributions or withdrawals), the system is 
described by the homogeneous linear equation 

ẋ + p(t)x = 0. 

The right hand side of (4) describes the outside influences. You are 
“driving” the system, with your contributions and withdrawals. These 
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constitute the “input signal,” to which the bank system reacts. Your 
bank balance, x, is the “system response.” 

For our purposes, a system is represented by some combination of 
the dependent variable x and its derivatives; a signal is a dependent 
variable, that is, a function of the independent variable t. Both the 
input signal q and the system response x are signals. We tend to write 
the part of the ODE representing the system on the left, and the part 
representing the input signal on the right. For more detail on this 
perspective, see Sections 8, 14 and 24. 

This way of thinking takes some getting used to. After all, in these 
terms the ODE (4) says: the system response x determines the signal 
(namely, the signal equals ẋ + p(t)x). The ODE (or more properly 
the differential operator) that represents the system takes the system 
response and gives you back the input signal—the reverse of what you 
might have expected. But that is the way it works; the equation gives 
you conditions on x which make it a response of the system. In a way, 
the whole objective of solving an ODE is to “invert the system” (or 
the operator that represents it). 

We might as well mention some other bits of terminology, while we’re 
at it. In the equation (4), the function p(t) is a coefficient of the 
equation (the only one in this instance—higher order linear equations 
have more), and the equation is said to have “constant coefficients” if 
p(t) is constant. In different but equivalent terminology, if p(t) is a 
constant then we have a linear time-invariant, or LTI, system. 
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