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18. Impulse and step responses 

In real life, we often do not know the parameters of a system (e.g. 
the spring constant, the mass, and the damping constant, in a spring-
mass-dashpot system) in advance. We may not even know the order 
of the system—there may be many interconnected springs (or diodes). 
(We will, however, suppose that all the systems we consider are linear 
and time independent, LTI.) Instead, we often learn about a system by 
watching how it responds to various input signals. 

The simpler the signal, the clearer we should expect the signature of 
the system parameters to be, and the easier it should be to predict how 
the system will respond to other more complicated signals. To simplify 
things we will always begin the system from “rest.” 

In section we will study the response of a system from rest initial 
conditions to two standard and very simple signals: the unit impulse 
β(t) and the unit step function u(t). 

The theory of the convolution integral, Section 19, gives a method 
of determining the response of a system to any input signal, given its 
unit impulse response. 

18.1. Impulse response. In engineering one often tries to understand 
a system by studying its responses to known signals. Suppose for defi­
niteness that the system is given by a first order left hand side ẋ+p(t)x. 
(The right hand side q(t), isn’t part of the “system”; it is the “input 
signal.”) The variable x will be called the “system response,” and in 
solving the ODE we are calculating that response. The analysis pro­
ceeds by starting “at rest,” by which is meant x(t) = 0 for t less than 
the moment at which the signals occur. One then feeds the system 
various signals and watches the system response. In a certain sense 
the simplest signal it can receive is a delta function concentrated at 
some time t0: β(t − t0). This signal is entirely concentrated at a single 
instant of time, but it has an effect nevertheless. In the case of a first 
order system, we have seen what that effect is, by thinking about what 
happens when I contribute a windfall to my bank account: for t < t0, 
x(t) = 0; and for t > t0, x(t) is the solution to ẋ + p(t)x = 0 subject 
to the initial condition x(t0) = 1. (Thus x(t0−) = 0 and x(t0+) = 1.) 
If p(t) = a is constant, for example, this amounts to 

0 if t < t0 x(t) = −a(t−t0 )e if t > t0. 
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This system response depends upon t0, but if the system is LTI, as 
it is in this example, its dependence is very simple: The response to a 
unit impulse at t = 0 is called the weight function or unit impulse 
response of the system, or written w(t). If the system is given by 
ẋ + ax, the weight function is given by 

0 for t < 0 
w(t) = −ate for t > 0. 

In terms of it, the response to a unit impulse at any time t0 is 

x(t) = w(t − t0). 

18.2. Impulses in second order equations. The word “impulse” 
comes from the interpretation of the delta function as a component of 
the driving term q(t) in a second order system: 

(1) mẍ + bẋ + cx = q(t). 

In the mechanical interpretation of this equation, q(t) is regarded as an 
external force acting on a spring-mass-dashpot system. Force affects 
acceleration, so the cumulative total of force, that is the time integral, 
affects velocity. If we have a very large force exerted over a very small 
time, the acceleration becomes very large for a short time, and the 
velocity increases sharply. In the limit we have an impulse, also known 
as a good swift kick. If q(t) = aβ(t − t0), the system response is that 
the velocity ẋ increases abruptly at t = t0 by the quantity a/m. This 
produces a corner in the graph of x as a function of t, but not a break; 
the position does not change abruptly. 

Thus the system response, w(t), to a unit impulse at t = 0 is given 
for t < 0 by w(t) = 0, and for t > 0 by the solution to (1) subject to 
the initial condition x(0) = 0, ẋ(0) = 1/m. 

For example, if the system is governed by the homogeneous LTI 
equation ẍ + 2ẋ + 5x = 0, an independent set of real solutions is 
{e−t cos(2t), e−t sin(2t)}, and the solution to the initial value problem 
with x(0) = 0, ẋ(0) = 1, is (1/2)e−t sin(2t). Thus 

0 for t < 0 
w(t) = 

(1/2)e−t sin(2t) for t > 0. 

This is illustrated in Figure 13. Note the aspect in this display: the 
vertical has been inflated by a factor of more than 10. In fact the slope 
ẇ(0+) is 1. 

The unit impulse response needs to be defined in two parts; it’s zero 
for t < 0. This is a characteristic of causal systems: the impulse at 



� 

95 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

−0.05 

−0.1 
−1 0 1 2 3 4 5 6 

Figure 13. The weight function for ẍ + 2ẋ + 5x 

t = 0 has no effect on the system when t < 0. In a causal system the 
unit impulse response is always zero for negative time. 

18.3. Singularity matching. Differentiation increases the order of 
singularity of a function. For example, the “ramp” function 

0 for t < 0 
ramp(t) = 

t for t > 0. 

is not differentiable at t = 0 but it is continuous. Its derivative is 
the step function u(t), which is not continuous at t = 0 but it is a 
genuine function; its singular part is zero. But its derivative is the 
delta function. (This can be made to continue; one can define an even 
more singular type of generalized function, of which β→(t), often called 
a doublet, is an example, but we will not enter into this here.) 

Suppose a function satisfies an ODE, say 

mẍ + bẋ + cx = q(t), 
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in which q(t) may have a singular part. Whatever singularities x may 
have get accentuated by the process of differentiation, so the most 
singular part of q(t) must match up with the most singular part of mẍ. 
This then forces x to be not too very singular; otherwise its second 
derivative would be more singular than q(t). 

To be more precise, if q(t) is a generalized function in our sense, then 
its singular part must occur as the singular part of mẍ. The result is 
that ẋ does not have a singular part, but does have discontinuities 
at the locations at which q(t) has delta components. Similarly, x is 
continuous, but has jumps in its derivative at those locations. This 
makes physical sense: a second order system response to a generalized 
function is continuous but shows sudden jumps in velocity where the 
signal exhibits impulses. 

This analysis is quantitative. If for example q(t) = 3β(t) + 6t, mẍ
has singular part 3β(t), so ẍ has singular part (3/m)β(t). Thus ẋ is 
continuous except at t = 0 where it has a jump in value of 3/m; and x 
is differentiable except at t = 0, where its derivative jumps by 3/m in 
value. 

In a first order system, say mẋ + kx = q(t), the singular part of mẋ
is the singular part of q(t), so x is continuous except at those places. 
If for example q(t) = 3β(t) + 6t, ẋ has singular part (3/m)β(t), so x 
jumps in value by 3/m at t = 0. 

This line of reasoning is called “singularity matching.” 

18.4. Step response. This is the response of a system at rest to a 
constant input signal being turned on at t = 0. I will write w1(t) for this 
system response. If the system is represented by the LTI operator p(D), 
then w1(t) is the solution to p(D)x = u(t) with rest initial conditions, 
where u(t) is the unit step function. 

The unit step response can be related to the unit impulse response 
using the following observation: The time invariance of p(D) is equiv­
alent to the fact that as operators 

p(D)D = Dp(D). 

We can see this directly: 

(anDn + + a0I)D = anDn+1 + + a0D = D(anDn + + a0I) .· · · · · · · · · 

Using this we can differentiate the equation p(D)w1 = 1 to find 
that p(D)(Dw1) = β(t), with rest initial conditions. That is to say, 
ẇ1(t) = w(t), or: 
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Figure 14. The unit step response for ẍ + 2ẋ + 5x 

The derivative of the unit step response is 
the unit impulse response. 

If we return to the system represented by ẍ + 2ẋ + 5x considered 
above, a particular solution to ẍ + 2ẋ + 5x = 1 is given by x = 1/5, 
so the general solution is x = (1/5) + e−t(a cos(2t) + b sin)2t)). Setting 
x(0) = 0 and ẋ(0) = 0 leads to 

0 for t < 0 
w1(t) = 

(1/5) − (e−t/10)(2 cos(2t) + sin(2t)) for t > 0 

as illustrated in Figure 14. You can check that the derivative of this 
function is w(t) as calculated above. In this example the unit impulse 
response is a simpler function than the unit step response, and this is 
generally the case. 
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