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17. Impulses and generalized functions 

In calculus you learn how to model processes using functions. Func­
tions have their limitations, though, and, at least as they are treated 
in calculus, they are not convenient for modeling some important pro­
cesses and events, especially those involving sudden changes. In this 
section we explain how the function concept can be extended to a wider 
class of objects which conveniently model such processes. 

17.1. From bank accounts to the delta function. Recall from Sec­
tion 2 the model of the savings account, beginning with the “difference 
equation” 

(1) x(t + �t) = x(t) + I(t)x(t)�t + q(t)�t 

and continuing to the differential equation 

(2) ẋ − I(t)x = q(t) . 

Here I(t) is the interest rate at time t and q(t) is the rate of contribu­
tion. Here q(t) is measured in dollars per year, and, being a mathemati­
cian, I have taken the limit and replaced frequent small payments (say 
$1 each day) by a continual payment (at a constant rate of q(t) = 365 
dollars per year). 

In fact, banks do not behave like mathematicians and take this limit. 
They use the difference equation (1) and compute intensively. Solving 
the ODE (2) is much simpler, and leads to good agreement with the 
discrete calculation. This continuous approximation is critical to the 
use of differential equations in modeling. The world is in fact dis­
crete, made up of atoms (and smaller discrete structures), but in order 
to understand this seething digital mass we make continuous—even 
differentiable—approximations. 

On the other hand, there are some processes which cannot be conve­
niently accommodated by this paradigm. For example, while I continue 
to save at the rate of $1/day, my wealthy aunt decided to give me $1000 
as a birthday present, and I deposited this into the bank in one lump 
sum. How can we model this process? 

One way is the following: solve the ODE (2) with q = 365, reflecting 
the compounding of interest in my account, subject to an appropriate 
initial condition, say x(0) = x0. Then, at the moment I plan to deposit 
the gift, say at t = t1 > 0, stop this process and compute my balance 
at the instant of the big deposit, x(t1). Write x1 for this number. Then 
start the ODE up again with a new initial condition, x(t1) = x1 +1000, 
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and solve anew to get x(t) for t > t1. Another way to think of this is to 
imagine that a separate fund is set up with the $1000 gift, and allowed 
to grow at the same interest rate. The two perspectives are equivalent, 
by superposition. We get 

� −q/I + (x0 + q/I)eIt if 0 < t < t1 

x(t) = 
−q/I + (x0 + q/I)eIt + 1000eI(t−t1) if t > t1 

The number t − t1 is the amount of time the gift has been in the bank 
at time t. 

I’d like to introduce some notation here. My bank balance seems to 
have two values at t = t1: x1, and x1 +1000. There is notation to handle 
this. One writes x(t1−) for the balance at t = t1 as estimated from 
knowledge of the balance from times before the gift; mathematically, 

x(t1−) = lim x(t). 
t�t1 

Similarly, x(t1+) is the balance at t = t1 from the perspective of later 
times; mathematically, 

x(t1+) = lim x(t). 
t�t1 

The actual value we assign as x(t1) is unimportant and can be left 
undeclared. 

The fact is that the approach we just used to deal with this windfall 
situation is often the preferred strategy. Still, it would be convenient to 
find some way to incorporate a one-time essentially instantaneous gift 
into the rate q(t). Then there’s the withdrawal I made when I bought 
the BMW, too—so the machinery should accommodate a series of such 
events, at different times, of various magnitudes, and of either sign. 

A good way to understand a rate is by considering the cumulative 
total. The cumulative total contribution to the account, from time zero 
up to time t, is 

� t 

Q(t) = q(δ)dδ, 
0 

so in our case (before the gift) Q(t) = 365t. (Note that I had to come up 
with a new symbol for the time variable inside the integral.) Then the 
rate is given (by the fundamental theorem of calculus) as the derivative 
of the cumulative total: q = Q→(t). When I incorporate my aunt’s gift, 
the cumulative total jumps by $1000 at time t1: so it is given by 

365t for t < t1Q(t) = 
365t + 1000 for t > t1 
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(and it doesn’t much matter what we declare Q(t1) to be.) 

This is a perfectly good function, but it fails to be differentiable (in 
the usual sense) at t = t1, so the corresponding rate, q(t) = Q→(t), has 
problems at t = t1. 

We can approximate such a rate in the following way. Imagine that 
the gift isn’t deposited all at once but instead over a short period of 
time, say h, starting at time t1. Thus the new rate function has a 
graph which is horizontal with value 365 until t = t1, then it jumps to 
a value of 365 + 1000/h, and then, at t = t1 + h, it falls back to the 
constant value 365. We can try to take a limit here, letting h � 0, but 
the result is not a function in the usual sense of the word. 

Nevertheless, all these considerations indicate that there may be a 
mathematical concept a little more general than the function concept 
which serves to model a rate which produces a jump in the cumulative 
total. This is indeed the case: they are called generalized functions, 
and they are heavily studied by mathematicians and used by engineers 
and scientists. They form a convenient language. 

17.2. The delta function. The most basic rate of this sort is the one 
which produces a “unit step” cumulative total: 

0 for t < 0 
u(t) = 

1 for t > 0 

This u(t) is an important function, and it is sometimes called the Heav­
iside function. It doesn’t much matter what we declare u(0) to be, 
and we’ll just leave it unspecified; but we do know u(0−) = 0 and 
u(0+) = 1. The corresponding rate is the Dirac delta function, 

β(t) = u →(0). 

This object β(t) behaves like an ordinary function, in fact like the 
constant function with value 0, except at t = 0, where it can be thought 
of as taking on such a large value that the area under the graph is 1. 
The delta function is also called the unit impulse function. 

Using this notation, my rate of contribution, including my aunt’s 
gift, is 

q(t) = 365 + 1000 β(t − t1). 

Just as for (ordinary) functions, subtracting t1 inside shifts the graph 
right by t1 units; the spike occurs at t = t1 rather than at t = 0. 
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We can also use the delta function to model discrete monthly con­
tributions accurately, without replacing them with a continuous con­
tribution. If the rate is $365 per year, and I contribute at the start 
of each month (or more precisely at t = 0, 1/12, 2/12, . . .) starting at 
t = 0, then the rate is 

� ⎨ 
365 1 2 

q(t) = β(t) + β(t − ) + β(t − ) + . 
12 12 12 

· · · 

When these shifted and scaled delta functions are added to “ordi­
nary” functions you get a “generalized function.” I’ll describe a little 
part of the theory of generalized functions. The next few paragraphs 
will sound technical. I hope they don’t obscure the simplicity of the 
idea of generalized functions as a model for abrupt changes. 

I will use the following extensions of a definition from Edwards and 
Penney (p. 268): To prepare for it let me call a collection of real num­
bers a1, a2, . . ., sparse if for any r > 0 there are only finitely many of 
k such that ak < r. So any finite collection of numbers is sparse; the | |
collection of whole numbers is sparse; but the collection of numbers 
1, 1/2, 1/3, . . ., is not sparse. Sparse sets don’t bunch up. The empty 
set is sparse. 

When I describe a function (on an interval) I typically won’t insist 
on knowing its values for all points in the interval. I’ll allow a sparse 
collection of points at which the value is undefined. We already saw 
this in the definition of u(t) above. 

A function f(t) (on an interval) is piecewise continuous if (1) it is 
continuous everywhere (in its interval of definition) except at a sparse 
collection of points; and (2) for every a, both f(a+) and f(a−) exist. 

A function f(t) is piecewise differentiable if (1) it is piecewise con­
tinuous, (2) it is differentiable everywhere except at a sparse collection 
of points, and its derivative is piecewise continuous. 

We now want to extend this by including delta functions. A gener­
alized function is a piecewise continuous function fr(t) plus a linear 
combination of delta functions, 

(3) fs(t) = bkβ(t − ak), 

where the ak’s form a sparse set. 

Write f(t) for the sum: 

f(t) = fr(t) + fs(t). 
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fr(t) is the “regular part” of f(t), and fs(t) is the “singular part.” We 
define f(a−) to be fr(a−) and f(a+) to be fr(a+). Since the actual 
value of f(t) at t = a is not used to compute these limits, this is a good 
definition even if a is one of the ak’s. 

We will use a “harpoon” to denote a delta function in a graph. The 
harpoon should be thought to be very high. This notation by itself does 
not include the information of the area under the graph. To deal with 
this we will decorate the barb of the harpoon representing kβ(t − a) 
with the number k. k may be negative, in which case the harpoon 
might better be thought of as extending downward. We will denote 
the same function, kβ(t− a) equally by a downward harpoon decorated 
with −k: 

� ��k � 

� or a � 
a 

��−k 

For example, 1 − 3β(t − 2) can be denoted by either of the following 
graphs. 

� ��−3 �
 

1 1
 

� or 2 � 
2 

�� 3 

A harpoon with k = 0 is the same thing as no harpoon at all: 
0β(t − a) = 0. We’ll call the term bkβ(t − ak) occurring in fs(t) the 
singularity of f(t) at t = ak. If a is not among the ak’s (or if a = ak 

but bk = 0) then there is no singularity in f(t) at t = a. 
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17.3. Integrating generalized functions. Generalized functions are 
set up so they can be integrated. We know what the integral of a delta 
function should be, since we are to think of it as the derivative of the 
unit step function: 

c 

β(t − a) dt = u(c − a) − u(b − a). 
b 

If b < a < c, this is 1. If a is not between b and c, this is 0. If a = b 
or a = c then this integral involves the expression u(0), which is best 
thought of as undefined. We can however define 

� c+	 � c� 

f(t) dt = lim lim f(t) dt, 
b��b c��cb−	 b� 

and this gives a well defined result when f(t) = β(t − a): Assuming 
b 	c,→	

c+
 

b− 
β(t − a) dt = 1 if b → a → c,
 

and zero otherwise. In particular, 
� a+ 

β(t − a) dt = 1. 
a− 

Now if f(t) is any generalized function, we can define the integral 
� c+ 

f(t) dt 
b− 

by integrating the regular part f(t) in the usual way, and adding the 
sum of the bk’s over k for which b ak c (using the notation of (3)). → → 

The multiple of the delta function that occurs at t = a in a general­
ized function can be expressed as 

� a+ 

b = f(t) dt. 
a− 

17.4. The generalized derivative. Generalized functions let us make 
sense of the derivative of a function which is merely piecewise differen­
tiable. 

For example, we began by saying that the “derivative” of the piece­
wise differentiable function u(t − a) is the generalized function β(t − a). 
This understanding lets us define the generalized derivative of any 
piecewise continuously differentiable function f(t). It is a generalized 
function. Its regular part, fr 

→ (t), is the usual derivative of f(t) (which 
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is defined except where the graph of f(t) has breaks or corners), and 
its singular part is given by the sum of terms 

(f(a+) − f(a−))β(t − a), 

summed over the values a of t where the graph of f(t) has breaks. Each 
shifted and scaled β function records the instantaneous velocity needed 
to accomplish a sudden jump in the value of f(t). When the graph 
of f(t) has a corner at t = a, the graph of f →(t) has a jump at t = a 
and isn’t defined at t = a itself; this is a discontinuity in the piecewise 
continuous function fr 

→ (t). 

With this definition, the “fundamental theorem of calculus” 
� c+ 

f →(t) dt = f(c+) − f(b−) 
b− 

holds for generalized functions. 

For further material on this approach to generalized functions the 
reader may consult the article “Initial conditions, generalized functions, 
and the Laplace transform,” IEEE Control Systems Magazine 27 (2007) 
22–35, by Kent Lundberg, David Trumper, and Haynes Miller. A ver­
sion is available at http://www-math.mit.edu/�hrm/papers/lmt.pdf. 

http://www-math.mit.edu/~hrm/papers/lmt.pdf
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