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13. NATURAL FREQUENCY AND DAMPING RATIO

There is a standard, and useful, normalization of the second order
homogeneous linear constant coefficient ODE

m&+bx+kxr=0

under the assumption that both the “mass” m and the “spring con-
stant” k are positive. It is illustrated in the Mathlet Damping Ratio.

In the absence of a damping term, the ratio k/m would be the square
of the circular frequency of a solution, so we will write k/m = w? with
w, > 0, and call w,, the natural circular frequency of the system.

Divide the equation through by m: & + (b/m)# + w?x = 0. Critical
damping occurs when the coefficient of 1 is 2w,,. The damping ratio ¢
is the ratio of b/m to the critical damping constant: ¢ = (b/m)/(2w,).
The ODE then has the form

(1) I+ 20wt +wiz =0

Note that if x has dimensions of cm and ¢ of sec, then w, had di-
mensions sec™!, and the damping ratio ¢ is “dimensionless,” a number
which is the same no matter what units of distance or time are chosen.
Critical damping occurs precisely when ¢ = 1: then the characteristic
polynomial has a repeated root: p(s) = (s + wy)?.

In general the characteristic polynomial is s? + 2{w,s + w2, and it
has as roots

—Cwp £ /w2 — w2 =w,(—C £/ -1).

These are real when |(| > 1, equal when ¢ = £1, and nonreal when
|| < 1. When || < 1, the roots are

—Cwn + iwd
where
(2) wa=1-Cuw,

is the damped circular frequency of the system. These are com-
plex numbers of magnitude w,, and argument 46, where —( = cos#.
Note that the presence of a damping term decreases the frequency of
a solution to the undamped equation—the natural frequency w,—by
the factor /1 — (2. The general solution is

(3) z = Ae=“r cos(wgt — @)
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Suppose we have such a system, but don’t know the values of w,, or
(. At least when the system is underdamped, we can discover them by
a couple of simple measurements of the system response. Let’s displace
the mass and watch it vibrate freely. If the mass oscillates, we are in the
underdamped case. We can find wy by measuring the times at which x
achieves its maxima. These occur when the derivative vanishes, and

&= Ae=nt (—Cwy, cos(wat — @) — wysin(wgt — ¢)) .
The factor in parentheses is sinusoidal with circular frequency wy, so
successive zeros are separated from each other by a time lapse of m/wy.
If ¢; and ¢y are the times of neighboring maxima of x (which occur at
every other extremum) then ¢y —t; = 27/wy, so we have discovered the
damped natural frequency:

(4) wy= 2"

ty — 1t

We can also measure the ratio of the value of x at two successive
maxima. Write x; = x(t;) and z3 = z(ty). The difference of their
natural logarithms is the logarithmic decrement:

A=Inzxy —Inzy =1In (ﬂ) )

X2

Then
A

T9 =€ Tx.

The logarithmic decrement turns out to depend only on the damping
ratio, and to determine the damping ratio. To see this, note that the
values of cos(wgt —¢) at two points of time differing by 27 /wy are equal.
Using (3) we find

—Cwnt1
T _ ¢ _ lwn(ta—t1)
X9 e_cwnt2

Thus, using (4) and (2),

T 2m 2n¢
A=mn <_) = Conlts — 1) = G = HTC
T ( ) wWa /1=
From the quantities wy and A, which are directly measurable charac-
teristics of the unforced system response, we can calculate the system
parameters w,, and (:
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