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13. Natural frequency and damping ratio 

There is a standard, and useful, normalization of the second order 
homogeneous linear constant coefficient ODE 

mẍ + bẋ + kx = 0 

under the assumption that both the “mass” m and the “spring con­
stant” k are positive. It is illustrated in the Mathlet Damping Ratio. 

In the absence of a damping term, the ratio k/m would be the square 
of the circular frequency of a solution, so we will write k/m = �n 

2 with 
�n > 0, and call �n the natural circular frequency of the system. 

Divide the equation through by m: ẍ + (b/m)ẋ + �n
2 x = 0. Critical 

damping occurs when the coefficient of ẋ is 2�n. The damping ratio α 
is the ratio of b/m to the critical damping constant: α = (b/m)/(2�n). 
The ODE then has the form 

(1) ẍ + 2α�nẋ + �n
2 x = 0 

Note that if x has dimensions of cm and t of sec, then �n had di­
mensions sec−1, and the damping ratio α is “dimensionless,” a number 
which is the same no matter what units of distance or time are chosen. 
Critical damping occurs precisely when α = 1: then the characteristic 
polynomial has a repeated root: p(s) = (s + �n)2 . 

In general the characteristic polynomial is s2 + 2α�ns + �n
2, and it 

has as roots 

−α�n ± α2�n 
2 − �2 = �n(−α ± α2 − 1).n 

These are real when |α| ∗ 1, equal when α = ±1, and nonreal when 
|α| < 1. When |α| → 1, the roots are 

−α�n ± i�d 

where 

(2) �d = 1 − α2 �n 

is the damped circular frequency of the system. These are com­
plex numbers of magnitude �n and argument ±ζ, where −α = cos ζ. 
Note that the presence of a damping term decreases the frequency of 
a solution to the undamped equation—the natural frequency �n—by 
the factor 1 − α2 . The general solution is 

(3) x = Ae−λ�nt cos(�dt − π) 
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Suppose we have such a system, but don’t know the values of �n or 
α. At least when the system is underdamped, we can discover them by 
a couple of simple measurements of the system response. Let’s displace 
the mass and watch it vibrate freely. If the mass oscillates, we are in the 
underdamped case. We can find �d by measuring the times at which x 
achieves its maxima. These occur when the derivative vanishes, and 

ẋ = Ae−λ�nt (−α�n cos(�dt − π) − �d sin(�dt − π)) . 

The factor in parentheses is sinusoidal with circular frequency �d, so 
successive zeros are separated from each other by a time lapse of ν/�d. 
If t1 and t2 are the times of neighboring maxima of x (which occur at 
every other extremum) then t2 − t1 = 2ν/�d, so we have discovered the 
damped natural frequency: 

2ν 
(4)	 �d = . 

t2 − t1 

We can also measure the ratio of the value of x at two successive 
maxima. Write x1 = x(t1) and x2 = x(t2). The difference of their 
natural logarithms is the logarithmic decrement: 

� ⎨ 
x1

� = ln x1 − ln x2 = ln . 
x2 

Then 
−� x2 = e x1. 

The logarithmic decrement turns out to depend only on the damping 
ratio, and to determine the damping ratio. To see this, note that the 
values of cos(�dt−π) at two points of time differing by 2ν/�d are equal. 
Using (3) we find 

−λ�nt1x1 e λ�n(t2−t1)= = e . 
x2 e−λ�nt2 

Thus, using (4) and (2), 
� ⎨ 

x1	 2ν 2να 
� = ln 

x2 
= α�n(t2 − t1) = α�n 

�d 
= � 

1 − α2 
. 

From the quantities �d and �, which are directly measurable charac­
teristics of the unforced system response, we can calculate the system 
parameters �n and α: 

� ⎨2
�/2ν	 �d � 

(5)	 α = � , �n = � = 1 + �d . 
1 + (�/2ν)2 1 − α2 2ν 
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