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12. Resonance and the exponential shift law 

12.1. Exponential shift. The calculation (10.1) 

(1) p(D)e rt = p(r)e rt 

extends to a formula for the effect of the operator p(D) on a product 
of the form ertu, where u is a general function. This is useful in solving 
p(D)x = f(t) when the input signal is of the form f(t) = ertq(t). 

The formula arises from the product rule for differentiation, which 
can be written in terms of operators as 

D(vu) = v Du + (Dv)u. 

If we take v = ert this becomes 

D(e rt u) = e rtDu + re rt u = e rt(Du + ru) . 

Using the notation I for the identity operator, we can write this as 

(2) D(e rt u) = e rt(D + rI)u. 

If we apply D to this equation again, 

D2(e rt u) = D(e rt(D + rI)u) = e rt(D + rI)2 u , 

where in the second step we have applied (2) with u replaced by (D + 
rI)u. This generalizes to 

Dk(e rt u) = e rt(D + rI)k u. 

The final step is to take a linear combination of Dk’s, to form a 
general LTI operator p(D). The result is the 

Exponential Shift Law: 

(3) p(D)(ertu) = ertp(D + rI)u 

The effect is that we have pulled the exponential outside the differential 
operator, at the expense of changing the operator in a specified way. 

12.2. Product signals. We can exploit this effect to solve equations 
of the form 

p(D)x = e rt q(t) , 

by a version of the method of variation of parameter: write x = ertu, 
apply p(D), use (3) to pull the exponential out to the left of the op­
erator, and then cancel the exponential from both sides. The result 
is 

p(D + rI)u = q(t) , 
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a new LTI ODE for the function u, one from which the exponential 
factor has been eliminated. 

Example 12.2.1. Find a particular solution to ẍ + ẋ + x = t2e3t . 

With p(s) = s2 + s + 1 and x = e3tu, we have 

ẍ + ẋ + x = p(D)x = p(D)(e 3t u) = e 3t p(D + 3I)u . 

Set this equal to t2e3t and cancel the exponential, to find 

p(D + 3I)u = t2 

or u̇ + 3u = t2 . This is a good target for the method of undetermined 
coefficients (Section 11). The first step is to compute 

p(s + 3) = (s + 3)2 + (s + 3) + 1 = s 2 + 7s + 13 , 

so we have ü + 7u̇ + 13u = t2 . There is a solution of the form up = 
at2 + bt + c, and we find it is 

up = (1/13)t2 − (14/132)t + (85/133) . 

Thus a particular solution for the original problem is 

xp = e 3t((1/13)t2 − (14/132)t + (85/133)) . 

Example 12.2.2. Find a particular solution to ẋ + x = te−t sin t. 

The signal is the imaginary part of te(−1+i)t, so, following the method 
of Section 10, we consider the ODE 

ż + z = te(−1+i)t . 

If we can find a solution zp for this, then xp = Im zp will be a solution 
to the original problem. 

We will look for z of the form e(−1+i)tu. The Exponential Shift Law 
(3) with p(s) = s + 1 gives 

ż + z = (D + I)(e(−1+i)t u) = e(−1+i)t((D + (−1 + i)I) + I)u 

= e(−1+i)t(D + iI)u. 
When we set this equal to the right hand side we can cancel the expo­
nential: 

(D + iI)u = t 
or u̇ + iu = t. While this is now an ODE with complex coefficients, 
it’s easy to solve by the method of undetermined coefficients: there 
is a solution of the form up = at + b. Computing the coefficients, 
up = −it + 1; so zp = e(−1+i)t(−it + 1). 

Finally, extract the imaginary part to obtain xp:


zp = e −t(cos t + i sin t)(−it + 1)
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has imaginary part 

xp = e −t(−t cos t + sin t). 

12.3. Resonance. We have noted that the Exponential Response For­
mula for a solution to p(D)x = ert fails when p(r) = 0. For example, 
For example, suppose we have ẋ+ x = e−t . The Exponential Response 
Formula proposes a solution xp = e−t/p(−1), but p(−1) = 0 so this 
fails. There is no solution of the form cert . 

This situation is called resonance, because the signal is tuned to a 
natural mode of the system. 

Here is a way to solve p(D)x = ert when this happens. The ERF 
came from the calculation 

p(D)e rt = p(r)e rt , 

which is valid whether or not p(r) = 0. We will take this expression 
and differentiate it with respect to r, keeping t constant. The result, 
using the product rule and the fact that partial derivatives commute, 
is 

p(D)tert = p →(r)e rt + p(r)tert 

If p(r) = 0 this simplifies to 

(4) p(D)tert = p →(r)e rt . 

Now if p→(r) = 0 we can divide through by it and see: ∈
The Resonant Exponential Response Formula: If p(r) = 0 then 
a solution to p(D)x = aert is given by 

tert 

(5) xp = a 
p→(r) 

provided that p→(r) = 0. ∈
In our example above, p(s) = s + 1 and r = 1, so p→(r) = 1 and 

xp = te−t is a solution. 

This example exhibits a characteristic feature of resonance: the solu­
tions grow faster than you might expect. The characteristic polynomial 
leads you to expect a solution of the order of e−t . In fact the solution 
is t times this. It still decays to zero as t grows, but not as fast as e−t 

does. 

Example 12.3.1. Suppose we have a harmonic oscillator represented 
by ẍ + �n

2x, or by the operator D2 + �n
2I = p(D), and drive it by the 
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signal a cos(�t). This ODE is the real part of 

z̈ + �2 z = ae i�t ,n

so the Exponential Response Formula gives us the periodic solution 
i�nte

zp = a . 
p(i�) 

This is fine unless � = �n, in which case p(i�n) = (i�n)2 + �n 
2 = 0; so 

the amplitude of the proposed sinusoidal response should be infinite. 
The fact is that there is no periodic system response; the system is in 
resonance with the signal. 

To circumvent this problem, let’s apply the Resonance Exponential 
Response Formula: since p(s) = s2 + �n

2 , p→(s) = 2s and p→(i�n) = 2i�0, 
so 

tei�nt 

zp = a . 
2i�n 

The real part is 
a 

xp = t sin(�nt) . 
2�n 

The general solution is thus 
a 

x = t sin(�nt) + b cos(�nt − π) . 
2�n 

In words, all solutions oscillate with pseudoperiod 2ν/�n, and grow in 
amplitude like at/(2�n). When �n is large—high frequency—this rate 
of growth is small. 

12.4. Higher order resonance. It may happen that both p(r) = 0 
and p→(r) = 0. The general picture is this: Suppose that k is such 
that p(j)(r) = 0 for j < k and p(k)(r) = 0. Then p(D)x = aert has as ∈
solution 

tkert 

(6) xp = a 
(k)(r) 

. 
p

For instance, if � = �0 = 0 in Example 12.3.1, p→(i�) = 0. The signal 
is now just the constant function a, and the ODE is ẍ = a. Integrating 
twice gives xp = at2/2 as a solution, which is a special case of (6), since 
ert = 1 and p→→(s) = 2. 

You can see (6) in the same way we saw the Resonant Exponential 
Response Formula. So take (4) and differentiate again with respect to 
r: 

p(D)t2 e rt = p →→(r)e rt + p →(r)tert 
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If p→(r) = 0, the second term drops out and if we suppose p→→(r) = 0∈
and divide through by it we get 

� ⎨ 
t2ert 

p(D) = e rt 

p→(r) 

which the case k = 2 of (6). Continuing, we get to higher values of k 
as well. 

12.5. Summary. The work of this section and the last can be sum­
marized as follows: Among the responses by an LTI system to a signal 
which is polynomial times exponential (or a linear combination of such) 
there is always one which is again a linear combination of functions 
which are polynomial times exponential. By the magic of the complex 
exponential, sinusoidal factors are included in this. 
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