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12. RESONANCE AND THE EXPONENTIAL SHIFT LAW

12.1. Exponential shift. The calculation (10.1)
(1) p(D)e" = p(r)e”

extends to a formula for the effect of the operator p(D) on a product
of the form e"u, where u is a general function. This is useful in solving
p(D)x = f(t) when the input signal is of the form f(t) = e"q(t).

The formula arises from the product rule for differentiation, which
can be written in terms of operators as

D(vu) = v Du+ (Dv)u.
If we take v = € this becomes
D(e"™u) = " Du +re"'u = e™(Du + ru) .
Using the notation I for the identity operator, we can write this as

(2) D(e"u) =" (D +rl)u.

If we apply D to this equation again,
D?*(e"u) = D(e"™(D +rI)u) = (D +r1)*u,

where in the second step we have applied (2) with u replaced by (D +
rI)u. This generalizes to

DF(e"u) = e™(D + rI)*u.
The final step is to take a linear combination of D*’s, to form a
general LTT operator p(D). The result is the
Exponential Shift Law:

(3) p(D)(e"u) = e"'p(D + ri)u

The effect is that we have pulled the exponential outside the differential
operator, at the expense of changing the operator in a specified way.

12.2. Product signals. We can exploit this effect to solve equations
of the form

p(D)z = eq(t).
by a version of the method of variation of parameter: write z = e"u,
apply p(D), use (3) to pull the exponential out to the left of the op-
erator, and then cancel the exponential from both sides. The result
is

p(D +rl)u=q(t),
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a new LTI ODE for the function u, one from which the exponential
factor has been eliminated.

Example 12.2.1. Find a particular solution to & + & 4+ = = t2e3.
With p(s) = s* + s+ 1 and x = e¥u, we have
&+ i +a =p(D)x = p(D)(eu) = e*p(D + 31 )u.
Set this equal to t2e3* and cancel the exponential, to find
p(D +30u =t
or @+ 3u = t2. This is a good target for the method of undetermined
coefficients (Section 11). The first step is to compute

p(s+3)=(s+3)+(s+3)+1=5>+7s+13,

so we have i + 74 + 13u = t2. There is a solution of the form wu, =
at® + bt + ¢, and we find it is

u, = (1/13)t* — (14/13%)t + (85/13%).
Thus a particular solution for the original problem is
x, = e ((1/13)#* — (14/13%)t + (85/13%)) .
Example 12.2.2. Find a particular solution to # + = = te ' sint.

The signal is the imaginary part of te(~1*9*  so, following the method

of Section 10, we consider the ODE
bz =TI

If we can find a solution z, for this, then z, = Im 2, will be a solution
to the original problem.

We will look for z of the form e(~'*9%y. The Exponential Shift Law
(3) with p(s) = s+ 1 gives

iz = (D+ D) = (D + (=14 0)]) + Tu
= YD 4 il)u.
When we set this equal to the right hand side we can cancel the expo-
nential:
(D+il)u=t

or u + tu = t. While this is now an ODE with complezr coefficients,
it’s easy to solve by the method of undetermined coefficients: there
is a solution of the form w, = at 4+ 0. Computing the coefficients,
u, = —it + 1; 50 2, = eIV (—it 4+ 1).

Finally, extract the imaginary part to obtain z,:

2, = e ‘(cost +isint)(—it + 1)
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has imaginary part

x, = e '(—tcost +sint).

12.3. Resonance. We have noted that the Exponential Response For-
mula for a solution to p(D)x = e fails when p(r) = 0. For example,
For example, suppose we have &+ = e¢~!. The Exponential Response
Formula proposes a solution x, = e~*/p(—1), but p(—1) = 0 so this
fails. There is no solution of the form ce™.

This situation is called resonance, because the signal is tuned to a
natural mode of the system.

Here is a way to solve p(D)z = e when this happens. The ERF
came from the calculation

p(D)e" = p(r)e™,

which is valid whether or not p(r) = 0. We will take this expression
and differentiate it with respect to r, keeping t constant. The result,
using the product rule and the fact that partial derivatives commute,
is

p(D)te™ = p/(r)e™ + p(r)te™
If p(r) = 0 this simplifies to
(1) p(D)te" = pl(r)e.
Now if p/(r) # 0 we can divide through by it and see:

The Resonant Exponential Response Formula: If p(r) = 0 then
a solution to p(D)z = ae™ is given by

(5) T, =a

provided that p/(r) # 0.

In our example above, p(s) = s+ 1 and r = 1, so p/(r) = 1 and
x, = te”! is a solution.

This example exhibits a characteristic feature of resonance: the solu-
tions grow faster than you might expect. The characteristic polynomial
leads you to expect a solution of the order of e~*. In fact the solution
is ¢ times this. It still decays to zero as t grows, but not as fast as e™*
does.

Example 12.3.1. Suppose we have a harmonic oscillator represented
by i + w2z, or by the operator D? + w2l = p(D), and drive it by the
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signal a cos(wt). This ODE is the real part of
P4 wlz = ae™t,

so the Exponential Response Formula gives us the periodic solution

eiwnt

Zp = a

pliw)

This is fine unless w = w,, in which case p(iw,) = (iw,)? + w? = 0; so
the amplitude of the proposed sinusoidal response should be infinite.
The fact is that there is no periodic system response; the system is in
resonance with the signal.

To circumvent this problem, let’s apply the Resonance Exponential
Response Formula: since p(s) = s +w?, p/(s) = 2s and p'(iw,) = 2iwy,
SO

teiwnt

2iw,

Zp=a

The real part is
a .
Ty = Tnt sin(wpt) .
The general solution is thus
a
- —t 1 nt b nt - .
x oo sin(wy,t) + bcos(w b)
In words, all solutions oscillate with pseudoperiod 27 /w,, and grow in
amplitude like at/(2w,). When w, is large—high frequency—this rate
of growth is small.

12.4. Higher order resonance. It may happen that both p(r) = 0
and p'(r) = 0. The general picture is this: Suppose that k is such
that pU)(r) = 0 for j < k and p®)(r) # 0. Then p(D)x = ae™ has as
solution

tk rt
(6) Ty = a——

For instance, if w = wy = 0 in Example 12.3.1, p(iw) = 0. The signal
is now just the constant function a, and the ODE is & = a. Integrating
twice gives x, = at?/2 as a solution, which is a special case of (6), since
e =1 and p’(s) = 2.

You can see (6) in the same way we saw the Resonant Exponential
Response Formula. So take (4) and differentiate again with respect to
r:

p(D)t2ert _ p//(fr,)ert + p/(r)te”
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If p/(r) = 0, the second term drops out and if we suppose p”(r) # 0
and divide through by it we get

w(%5)-

which the case k = 2 of (6). Continuing, we get to higher values of k
as well.

12.5. Summary. The work of this section and the last can be sum-
marized as follows: Among the responses by an LTI system to a signal
which is polynomial times exponential (or a linear combination of such)
there is always one which is again a linear combination of functions
which are polynomial times exponential. By the magic of the complex
exponential, sinusoidal factors are included in this.
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