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1. Notation and language


1.1. Numbers. We’ll write R for the set of all real numbers. We often 
think of the set of real numbers as the set of points on the number line. 

An interval is a subset I of the number line such that if a, c ∈ I, 
and b is a real number between a and c, then b ∈ I. There are several 
types of intervals, each with a special notation: 

(a, c) = {b ∈ R : a < b < c}, open intervals; 

(a, c] = {b ∈ R : a < b ≤ c} and 

[a, c) = {b ∈ R : a ≤ b < c}, half-open intervals; and 

[a, c] = {b ∈ R : a ≤ b ≤ c}, closed intervals. 

There are also unbounded intervals, 

(a, ∞) = {b ∈ R : a < b}, 
[a, ∞) = {b ∈ R : a ≤ b}, 
(−∞, c) = {b ∈ R : b < c}, 
(−∞, c] = {b ∈ R : b ≤ c}, and 

= R, the whole real line. The symbols ∞ and −∞ do not (−∞, ∞)
represent real numbers. They are merely symbols so that −∞ < a is a 
true statement for every real number a, as is a < ∞. 

1.2. Dependent and independent variables. Most of what we do 
will involve ordinary differential equations. This means that we will 
have only one independent variable. We may have several quantities 
depending upon that one variable, and we may wish to represent them 
together as a vector-valued function. 

Differential equations arise from many sources, and the independent 
variable can signify many different things. Nonetheless, very often it 
represents time, and the dependent variable is some dynamical quantity 
which depends upon time. For this reason, in these notes we will 
pretty systematically use t for the independent variable, and x for the 
dependent variable. 

Often we will write simply x, to denote the entire function. The 
symbols x and x(t) are synonymous, when t is regarded as a variable. 

We generally denote the derivative with respect to t by a dot: 

dx 
ẋ = ,

dt 
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and reserve the prime for differentiation with respect to a spatial vari-
able. Similarly, 

d2x 
ẍ = . 

dt2 

1.3. Equations and Parametrizations. In analytic geometry one 
learns how to pass back and forth between a description of a set by 
means of an equation and by means of a parametrization. 

For example, the unit circle, that is, the circle with radius 1 and 
center at the origin, is defined by the equation 

2 2 x + y = 1 . 

x

A solution of this equation is a value of (x, y) which satisfies the equa­
tion; the set of solutions of this equation is the unit circle. Any 
set will be the solution set of many different equations; for example, 
this same circle is also the set of points (x, y) in the plane for which 

4 + 2x2y2 + y4 = 1. 

This solution set is the same as the set parametrized by 

x = cos θ , y = sin θ , 0 ≤ θ < 2π . 

The set of solutions of the equation is the set of values of the parametriza-
tion. The angle θ is the parameter which specifies a solution. 

An equation is a criterion, by which one can decide whether a 
point lies in the set or not. (2, 0) does not lie on the circle, because it 
doesn’t satisfy the equation, but (1, 0) does, because it does satisfy the 
equation. 

A parametrization is an enumeration, a listing, of all the elements 
of the set. Usually we try to list every element only once. Sometimes 
we only succeed in picking out some of the elements of the set; for 
example 

2y = 
√

1 − x , −1 ≤ x ≤ 1 

picks out the upper semicircle. For emphasis we may say that some 
enumeration gives a complete parametrization if every element of the 
set in question is named; for example 

2y = 
√

1 − x , −1 ≤ x ≤ 1 , or y = x2 , −1 < x < 1 ,−
√

1 −
is a complete parametrization of the unit circle, different from the one 
given above in terms of cosine and sine. 

Usually the process of “solving” and equation amounts to finding a 
parametrization for the set defined by the equation. You could call a 
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parametrization of the solution set of an equation the “general solution” 
of the equation. This is the language used in Differential Equations. 

1.4. Parametrizing the set of solutions of a differential equa­
tion. A differential equation is a stated relationship between a function 
and its derivatives. A solution is a function satisfying this relationship. 
(We’ll emend this slightly at the end of this section.) 

For a very simple example, consider the differential equation 

ẍ = 0 . 

A solution is a function which satisfies the equation. It’s easy to write 
down many such functions: any function whose graph is a straight line 
satisfies this ODE. 

We can enumerate all such functions: they are 

x(t) = mt + b 

for m and b arbitrary real constants. This expression gives a parametriza­
tion of the set of solutions of ẍ = 0. The constants m and b are the 
parameters. In our parametrization of the circle we could choose θ ar­
bitrarily, and analogously now we can choose m and b arbitrarily; for 
any choice, the function mt + b is a solution. 

Warning: If we fix m and b, say m = 1, b = 2, we have a specific line 
in the (t, x) plane, with equation x = t + 2. One can parametrize this 
line easily enough; for example t itself serves as a parameter, so the 
points (t, t+2) run through the points on the line as t runs over all real 
numbers. This is an entirely different issue from the parametrization 
of solutions of ¨ = 0. Be sure you understand this point. x 

1.5. Solutions of ODEs. The basic existence and uniqueness theo­
rem for ODEs is the following. Suppose that f(t, x) is continuous in 
the vicinity of a point (a, b). Then there exists a solution to ẋ = f(t, x) 
defined in some open interval containing a, and it’s unique provided 
∂f/∂x exists. 

There are certainly subtleties here. But some things are obvious. 
The “uniqueness” part of this theorem says that knowing x(a) for one 
value t = a is supposed to pick out a single solution: there’s supposed 
to be only one solution with a given “initial value.” Well, look at 
the ODE ẋ = 1/t. The solutions can be found by simply integrating: 
x = ln t + c. This formula makes it look as though the solution with | |
x(1) = 0 is x = ln t . But in fact there is no reason to prefer this | |
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to the following function, which is also a solution to this initial value 
problem, for any value of c: 

ln t for t > 0 , 
x(t) = 

ln(−t) + c for t < 0 . 

The gap at t = 0 means that the values of x(t) for t > 0 have no power 
over the values for t < 0. 

For this reason it’s best to declare that a solution to an ODE must be 
defined on an entire interval. The graph has to be a connected curve. 

Thus it is more proper to say that the solutions to ẋ = 1/t are ln(t)+c 
for t > 0 and ln(−t)+ c for t < 0. The single formula ln t + c actually | |
describes two solutions for each value of c, one defined for t > 0 and 
the other for t < 0. The solution with x(1) = 0 is x(t) = ln t, with 
domain of definition the interval (0,∞). 
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