
1. Linearization: the phugoid equation as example 

“Linearization” is one of the most important and widely used math­
ematical terms in applications to Science and Engineering. In the con­
text of Differential Equations, the word has two somewhat different 
meanings. 

On the one hand, it may refer to the procedure of analyzing solutions 
of a nonlinear differential equation near a critical point by studying an 
approximating linear equation. This is linearizing an equation. 

On the other hand, it may refer to the process of systematically 
dropping negligibly small terms in the mathematical expression of the 
model itself, under the assumption that one is near an equilibrium. The 
result is that you obtain a linear differential equation directly, without 
passing through a nonlinear differential equation. This is linearizing a 
model. 

A virtue of the second process is that it avoids the need to work out 
the full nonlinear equation. This may be a challenging problem, often 
requiring clever changes of coordinates; while, in contrast, it is always 
quite straightforward to write down the linearization near equilibrium, 
by using a few general ideas. We will describe some of these ideas in 
this section. 

Most of the time, the linearization contains all the information about 
the behavior of the system near equilibrium, and we have a pretty 
complete understanding of how linear systems behave, at least in two 
dimensions. There aren’t too many behaviors possible. The ques­
tions to ask are: is the system stable or unstable? If it’s stable, is 
it underdamped (so the solution spirals towards the critical point) or 
overdamped (so it decays exponentially without oscillation)? If it’s un­
derdamped, what is the period of oscillation? In either case, what is 
the damping ratio? 

One textbook example of this process is the analysis of the linear 
pendulum. In this section we will describe a slightly more complicated 
example, the “phugoid equation” of airfoil flight. 

1.1. The airplane system near equilibrium. If you have ever flown 
a light aircraft, you know about “dolphining” or “phugoid oscillation.” 
This is precisely the return of the aircraft to the equilibrium state of 
steady horizontal flight. We’ll analyze this effect by linearizing the 
model near to this equilibrium. To repeat, the questions to ask are: Is 
this equilibrium stable or unstable? (Experience suggests it’s stable!) 
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Is it overdamped or underdamped? What is the damping ratio? If it’s 
underdamped, what is the period (or, more properly, the quasiperiod)? 

There are four forces at work: thrust F , lift L, drag D, and weight 
W = mg. At equilibrium F and D cancel, and L and W cancel. Here’s 
a diagram. In it the airplane is aligned with the thrust vector, since the 
engines provide a force pointing parallel with the body of the airplane. 

Thrust 

Weight 

Drag 

Lift 

Figure 1. Forces on an airfoil 

I’ll make the following simplifying assumptions: (1) the air is still 
relative to the ground (or, more generally, the ambient air is moving 
uniformly and we use a coordinate frame moving with the air); (2) the 
weight and the thrust are both constant. 

Lift and the drag are more complicated than weight and thrust. 
They are components of a “frictional” force exerted on the plane by 
the surrounding air. The drag is, by definition, the component of that 
force in the direction of the thrust (directed backwards), and the lift 
is the perpendicular component, directed towards the “up” side of the 
airfoil. 

When we call this force “frictional,” what we mean is that it depends 
upon the velocity of the plane (through the air) and on nothing else. 

Friction is a complex process, and it shows up differently in different 
regimes. Let’s first think about friction of a particle moving along the x 
axis. It is then a force ω(v) dependent upon v = ẋ. It always takes the 
value zero when the velocity is zero and is directed against the direction 
of motion. The tangent line approximation then lets us approximate 
ω(v) by a multiple of v when v is small. This is “linear damping,” and | | 
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it plays a big role in our study of second order LTI systems. When the 
velocity is relatively large, consideration of the nonlinear dependence 
of friction on velocity becomes unavoidable. Often, for v in a range of 
values the frictional force is reasonably well approximated by a power 
law: 

(1)	 ω(v) = 
−c|v|p

p 
for v � 0 

c v for v < 0| |
where c > 0 is a constant. This rather complicated looking expression 
guarantees that the force acts against the direction of motion. The 
magnitude is |ω(v)| = c|v|p. 

Often the power involved is p = 2, so ω(v) = −cv2 when v > 0. 
(Since squares are automatically positive we can drop the absolute 
values and the division into cases in (1).) To analyze motion near a 
given velocity v0, the tangent line approximation indicates that we need 
only study the rate of change of ω(v) near the velocity v0, and when 
p = 2 and v0 > 0, 

(2)	 ω�(v0) = −2cv0 =
2ω(v0) 

. 
v0 

We rewrote the derivative in terms of ω(v0) because doing so eliminates 
the constant c. 

Now let’s go back to the airfoil. Our last assumption is that near 
equilibrium velocity v0, drag and lift depend quadratically on speed. 
Stated in terms of (2) we have our next assumption: (3) the drag D(v) 
and the lift L(v) are quadratic, so by (2) they satisfy 

D�(v0) = 
2D(v0) 

, L�(v0) = 
2L(v0) 

. 
v0 v0 

There is an equilibrium velocity at which the forces are in balance: 
cruising velocity v0. Our final assumption is that at cruising velocity 
the pitch of the airplane is small: so (4) the horizontal component of 
lift is small. The effect is that to a good approximation, lift balances 
weight and thrust balances drag: 

D(v0) = F , L(v0) = mg . 

This lets us rewrite the equations for the derivatives can be rewritten 

(3)	 D�(v0) = 
2F

, L�(v0) = 
2mg 

. 
v0 v0 

This is all we need to know about the dynamics of airfoil flight.
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There are several steps in our analysis of this situation from this 
point. A preliminary observation is that in the phugoid situation the 
airplane has no contact with the ground, so everything is invariant 
under space translation. After all, the situation is the same for 
all altitudes (within a range over which atmospheric conditions and 
gravity are reasonably constant) and for all geographical locations. The 
implication is that Newton’s Law can be written entirely in terms of 
velocity and its derivative, acceleration. Newton’s Law is a second 
order equation for position, but if the forces involved don’t depend 
upon position it can be rewritten as a first order equation for velocity. 
This reasoning is known as reduction of order. 

1.2. Deriving the linearized equation of motion. The fundamen­
tal decision of linearization is this: 

Study the situation near the equilibrium we care about, and 
systematically use the tangent line approximation at that equi­
librium to simplify expressions. 

The process of replacing a function by its tangent line approximation 
is referred to as “working to first order.” 

Let’s see how this principle works out in the phugoid situation. 

One of the first steps in any mathematical analysis is to identify and 
give symbols for relevant parameters of the system, and perhaps to set 
up a well-adapted coordinate system. Here, we are certainly interested 
in the velocity. We have already introduced v0 for the equilibrium 
velocity, which by assumption (4) is horizontal. We write the actual 
velocity as equilibrium plus a correction term: Write 

w for the vertical component of velocity, and 

v0 + u for the horizontal component, 

and suppose the axes are arranged so that the plane is moving in the 
direction of the positive x axis. We are assuming that the plane is not 
too far from equilibrium, so we are assuming that w and u are both 
small. 

We will want to approximate the actual speed in terms of v0, u, 
and w. To do this, and for other reasons too, we will use a geometric 
principle which arises very often in linearization of physical systems. 

If a vector makes a small angle with the positive x axis, then to 
first order its x component is its length and its y component is 
its length times the slope. 
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x ~ c 

c 
(x,y) 

y ~ mc 

This is geometrically obvious, and equivalent to the facts that cos�(0) = 
0 and sin�(0) = 1. 

If we take x = v0 + u, y = w, and c = v, the estimate x � c says 
that the speed is approximately v0 +u; the normal component w makes 
only a “second order” contribution and we will ignore it. 

Now we use the linearization principle again: we plug this estimate 
of the speed into the tangent line approximation for D(v) and L(v) and 
use (3) and the values D(v0) = F and L(v0) = mg to find 

2F	 2mg
D ∼ F + u , L ∼ mg + u . 

v0	 v0 

Subscript L, W , T , and D by h and v to denote their horizontal and 
vertical components. Writing down similar triangles, we find (to first 
order, always—ignoring terms like u2 , uw, and w2): 

2mg w w 
Lv ∼ L ∼ mg + u , Lh ∼ L ∼ mg 

v0 v0 v0 

w 
Wv = mg , Wh = 0 , Tv = F , Th ∼ F 

v0 

w w	 2F 
Dv ∼ 

v0 
D ∼ 

v0 
F , Dh ∼ D ∼ F + 

v0 
u. 

In words, to first order the vertical components of thrust and drag 
still cancel and the vertical component of the lift in excess of the weight 
is given by (2mg/v0)u, so, by Newton’s law, 

2mg
(4)	 mẇ = u. 

v0 

Also, to first order, the horizontal component of the excess of drag 
over thrust is (2F/v0)u, and the horizontal component of the lift is 
−mg(w/v0): so 

2F mg
(5)	 mu̇ = − u − w. 

v0 v0 
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We can package these findings in matrix terms:


(6)	
d u 

= 
−2F/mv0 −g/v0 u

. 
dt w 2g/v0 0 w 

and we could go on to use the methods of linear systems to solve it. 
Instead, though, we will solve the equations (4), (5) by elimination. 
Differentiating the equation for ẇ and substituting the value for u̇
from the other equation gives the homogeneous second order constant 
coefficient linear differential equation 

2F 2g2 

(7)	 ẅ + ẇ + 
2 w = 0 

mv0 v
0 

1.3. Implications. From this (or from the system (6)) we can read 
off the essential characteristics of motion near equilibrium. We have in 
(7) a second order homogeneous linear ODE with constant coefficients; 
it is of the form 

ẅ + 2��nẇ + �n 
2 w = 0, 

where �n is the natural circular frequency and � is the damping ratio 
(for which see Section ??). Comparing coefficients, 

�
2 g F 

�n = , � = . 
v0 

�
2 mg 

We have learned the interesting fact that the period 

2υ 
�

2 υ 
P = = v0

�n g 

of phugoid oscillation depends only on the equilibrium velocity v0. In 
units of meters and seconds, P is about 0.45 v0. The nominal equilib­
rium speeds v0 for a Boeing 747 and an F15 are 260 m/sec and 838 
m/sec, respectively. The corresponding phugoid periods are about 118 
sec and 380 sec. 

We have also discovered that the phugoid damping ratio depends only 
on the “thrust/weight ratio,” a standard tabulated index for aircraft. 
Both � and F/mg are dimensionless ratios, and � is about .707(F/mg), 
independent of units. F/mg is about 0.27 for a Boeing 747, and about 
0.67 for an F15. 

The system is underdamped as long as � < 1, i.e. (F/mg) < 
�

2. 
Even an F15 doesn’t come close to having a thrust/weight approaching 
1.414. 
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To see a little more detail about these solutions, let’s begin by sup­
posing that the damping ratio is negligible. The equation (7) is then 
simply a harmonic oscillator with angular frequency �n, with general 
solution of the form 

w = w0 cos(�nt − ω) . 

Equation (4) then shows that u = (v0/2g)ẇ = −(v0/2g)�nw0 sin(�nt −
ω). But �n = 

�
2g/v0, so this is 

u = −(w0/
�

2) sin(�nt − ω) . 

That is: The vertical amplitude is 
�

2 times as great as the horizontal 
amplitude. 

Integrate once more to get the motion in space: 

x = x0 + v0t + a cos(�nt − ω) 

where a = v0w0/g—as a check, note that a does have units of length!— 
and 

y = y0 + 
�

2 a sin(�nt − ω) , 

for appropriate constants of integration x0 (which is the value of x at 
t = 0) and y0 (which is the average altitude). Relative to the frame of 
equilibrium motion, the plane executes an ellipse whose vertical axis 
is 
�

2 times its horizontal axis, moving counterclockwise. (Remember, 
the plane is moving to the right.) 

Relative to the frame of the ambient air, the plane follows a roughly 
sinusoidal path. The horizontal deviation u from equilibrium velocity 
is small and would be hard to detect in the flightpath. 

Reintroducing the damping, the plane spirals back to equilibrium. 

We can paraphrase the behavior in physics terms like this: Something 
jars the airplane off of equilibrium; suppose it is hit by a downdraft and 
the vertical component of its velocity, w, acquires a negative value. This 
puts us on the leftmost point on the loop. The result is a decrease in 
altitude, and the loss in potential energy translates to a gain in kinetic 
energy. The plane speeds up, increasing the lift, which counteracts 
the negative w. We are now at the bottom of the loop. The excess 
velocity continues to produce excess lift, which raises the plane past 
equilibrium (at the rightmost point on the loop). The plane now has 
w > 0, and rises above its original altitude. Kinetic energy is converted 
to potential energy, the plane slows down, passes through the top of 
the loop; the lowered speed results in less lift, and the plane returns to 
where it was just after the downdraft hit (in the frame of equilibrium 
motion). 
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A typical severe downdraft has speed on the order of 15 m/sec, so we 
might take c = 10 m/sec. With the 747 flying at 260 m/sec, this results 
in a vertical amplitude of 265 meters; the F15 flying at 838 m/sec gives 
a vertical amplitude of 855 meters, which could pose a problem if you 
are near the ground! 

Historical note: The term phugoid was coined by F. W. Lanchester in 
his 1908 book Aerodonetics to refer to the equations of airfoil flight. He 
based this neologism on the Greek ω�ζ π́, which does mean flight, but 
in the sense of the English word fugitive, not in the sense of movement 
through the air. Evidently Greek was not his strong suit. 

Question: Assumption (3) is the most suspect part of this analysis. 
Suppose instead of quadratic dependence we assume some other power 
law, for lift and drag. What is the analogue of (3), and how does this 
alter our analysis? 
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