IR. Input-Response Models

1. First-order linear ODE’s. If we use ¢ as the independent variable, thinking of it
as representing time; the linear first-order IVP in standard linear form is

1) Wi py=a) ¥ =1.

For the most part, this section will be about the most important special case: the constant
coefficient case, where p(%) is a constant function k:

(2) % +ky=4q(t), y(0)=yo.

The integrating factor for the ODE (2) is e*; using it, the general solution is

(3) y= e'kf (/ q(t)erdt + c).

Since the integral is only determined up to an arbitrary constant, (3) as it stands does not
give an explicit solution to the IVP (2). To get this, we use instead (cf. Notes D) a definite
integral from 0 to ¢, which requires us to change the ¢ in the integrand to a different dummy
variable, u say; then the explicit solution to the IVP (2) is

. ,
(4) y=e / q(u)e* du + yoe .
0 .

In this form, note that the first term on the right is the solution to the IVP (2) with the
initial condition yo = 0.

Terminology when k is positive. If k > 0, the long-term or steady-state solution is what

we call the first term on the right side of (4); it does not involve the initial value yo. The

second term on the right of (4), which does involve ¥, is called the transient since its effect

dies away as time increases: tlim yoe ¥ = 0. Thus, if k is positive, all solutions (4) to the
o0

ODE (2) tend toward the steady-state solution, as t — oo. '

Despite the use of the definite article, the steady-state solution is not unique: since all
the solutions approach the steady-state solution as ¢ — oo, they all approach each other,
and thus any of them can be taken as the steady-state solution. In practice, it is usually
the simplest-looking solution which is given this honor.

2. Input-response; superposition of inputs.

When the ODE (1) is used to model a physical situation, the left-hand side usually is
concerned with the physical set-up — the “system” — while the right-hand side represents
something external which is driving or otherwise affecting the system from the outside. For
this reason, the function ¢(t) is often called the input, or in some engineering subjects, the
signal; the corresponding solution y(t) is generally called the response of the system to this
input. The response will be a definite function if an initial condition has been specified,
otherwise it will be the general solution, involving an arbitrary constant. We will indicate
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2 18.03 NOTES

the relation of input to response symbolically by
q(t) ~y(t)  (input ~> response).

Superposition principle for inputs.

For the ODE y' + p(t)y = ¢(t), let ¢ and g2 be inputs, and ¢, 'bz constants. Then
(5) Y, @Y D aq+ e~ ay + ey

Proof. This is true because the ODE (1) is linear. The proof takes one line:

(ayy + cay2) + play + coyz) = (ay) + pay) + (cays + peaye) = a1 + 2ga.

The superposition principle allows us to break up a problem into simpler problems and
then at the end assemble the answer from its simpler pieces. Here is an easy example.

Example. Find the response of y' +2y =gq(t) to ¢=1+e™%,

Solution. The input ¢ = 1 generates the response y = 1/2, by inspection; the input e~

generates the response te~2¢, by solving; therefore the response to 1 +e~%tis 1/2 +te~2%. 0O

3. When k is positive and constant: system responses to linear inputs.

We return once again to the case when p(t) is a constant k& > 0. We want to get some
feeling for how the system response is related to the input. The temperature model will be
a good guide: in two notations — suggestive and neutral, respectively — the ODE is

6) T' + kT = kTe(2), y' +ky = kqe(t) = q(2).

Note that the neutral notation writes the input in two different forms: the g(¢) we have been
using, and also in the form kq.(¢) with the k factored out. This corresponds to the way the
input normally appears in physical problems and offers some advantages: for instance, g,
and y have the same units, whereas ¢ and y do not. In trying to relate response with input,
the relation will be clearer if we relate y with g., rather than with g. We will use for ¢, the
generic name physical input, or if we have a specific model in mind, the temperature input,
concentration input, and so on.

The expected behavior of the temperature model suggests general questions such as:
Is the response the same type of function as the physical input?
What controls its size?
Does the graph of the response lag behind that of the physical input?
What controls the size of the lag?

Our plan will be to get some feeling for the situation by answering these questions for
several simple physical inputs. Throughout, keep the temperature model in mind to guide
your intuition.

Example 2.  Find the response of the system (6) to the physical inputs 1 and ¢.

Solution. The ODE is y' + ky = k¢e..
If g. = 1, a solution by inspection is y = 1, so the response is 1.
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If g = ¢, the ODE is y' + ky = kt; using the integrating factor e** and subsequent
integration by parts leads (cf. (3)) to the simplest steady-state solution

Yy = ekt / ktektdt

tekt ekt
— =ktf{ 2> <
= ke ( k k2)

1
= t—;.

Thus the response of (6) is identical to the physical input ¢, but with a time lag 1/k. This
is reasonable when one thinks of the temperature model: the internal temperature increases
linearly at the same rate as the temperature of the external water bath, but with a time lag
dependent on the conductivity: the higher the conductivity, the shorter the time lag. -

Using the superposition principle for inputs, it follows from Example 2 that for the ODE
y' + ky = kg, its response to a general linear physical input is given by:

1
M linear input physical input: ¢. = a+ bt response: a+ b(t — E)'

In the previous example, we paid no attention to initial values. If they are important,
one cannot just give the steady-state solution as the response, one has to take account of
them, either by using a definite integral as in (4), or by giving the value of the arbitrary
constant in (3). Examples in the next section will illustrate.

4. Response to discontinuous inputs, k£ > 0.
The most basic discontinuous function is the unit-step function at a point, defined by

0, t<g; . .
1 ' unit-step function at a

, t>a.

®) ) = {

(We leave its value at a undefined, though some books give it the value 0, others the value
1 there.)

Example 3. Find the response of the IVP y' + ky = kg., y(0) =0, for t > 0, to the
unit-step physical input u,(t), where a > 0.

Solution. Fort < a the input is 0, so the response is 0. For ¢ > a, the steady-state solution
for the physical input u,(¢) is the constant function 1, according to Example 2 or-(7).

We still need to fit the value y(a) = 0 to the response for ¢ > a. Using (3) to do this, we
get 1+ ce %8 =0, so that ¢ = —e*3. We now assemble the results for ¢ < ¢ and ¢ > a into
one expression; for the latter we also put the exponent in a more suggestive form. We get
finally

unit-step input

' 0, 0<t<a;
9 physical input: u,(¢), a >0 response: y(t) = { = a

1-—e7kt-a) >4

Note that the response is just the translation a units to the right of the response to the
unit-step input at 0.
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Another way of getting the same answer would be to use the definite integral in (4); we
leave this as an exercise.

As another example of discontinuous input, we focus on the temperature model, and
obtain the response to the temperature input corresponding to the external bath initially
ice-water at 0 degrees, then replaced by water held at a fixed temperature for a time interval,
then replaced once more by the ice-water bath.

Example 4. Find the response of ¥’ + ky = kg. to the physical input

1, a<t<y
Ugh =

10
(10) 0, otherwise,

0<a<b; unit-box function on [a, b].

Solution. There are at least three ways to do this:

a) Express u,p as a sum of unit step functions and use (9) together with superposition of
inputs;
b) Use the function uqp directly in the definite integra.l expression (4) for the response;

¢) Find the response in two steps: first use (9) to get the response y(t) for the physical
input u4(t); this will be valid up to the point ¢ = b.

Then, to continue the response for values ¢ > b, evaluate y(b) and find the response for
t > b to the input 0, with initial condition y(b).

We will follow (c), leaving the first two as exercises.

By (9), the response to the physical input u,(t) is y(¢) = { (1)’_ v S f:.< a;
this is valid up to t = b, since u,p(t) = u,(t) for ¢ < b. Evaluating at b,

(11) y(b) = 1 — e~ k-a),

Using (3) to find the solution for ¢ > b, we note first that the steady-state solution will be
0, since uqp = 0 for ¢ > b; thus by (3) the solution for ¢ > b will have the form

(12) y(t) =0+ ce™*t

where c is determined from the initial value (11). Equating the initial values y(b) from (11)
and (12), we get

ce=H = 1 - —kbtka
from which
¢ = ekb — eko,
so by (12),
(13) y(t) = (¥ — eF¥)e ™, ¢t >b.

After combining exponents in (13) to give an alternative form for the response, we assemble
the parts, getting the response to the physical unit-box input uqs :
0, 0<t<a

(14) yt)=¢ 1- e"k(“""“), a<t<b
e—k(t=8) _ g=k(t-a) >},



IR. INPUT-RESPONSE MODELS 5

5. Response to sinusoidal inputs.

Of great importance in the applications is the sinusoidal input, i.e., a pure oscillation
like coswt or sinwt, or more generally, A cos(wt — ¢). (The last form includes both of the
previous two, as you can see by letting A =1 and ¢ = 0 or 7/2).

-In the temperature model, this could represent the diurnal varying of outside tempera-
ture; in the conentration model, the diurnal varying of the level of some hormone in the.
bloodstream, or the varying concentration in a sewer line of some waste product produced
periodically by a manufacturing process.

Later on in the term, we shall see that any periodic input f(¢) can be represented as an
infinite sum (Fourier series) of sinusoidal inputs of different frequencies; then by the super-
position principle, we will be able get the response to the periodic input f(¢) by adding up
the separate responses to each of the sinusoidal inputs.

Response of y' + ky = kg, to the physical inputs coswt, sinwt.

This calculation is a good example of how the use of complex exponentials can simplify
integrations and lead to a more compact and above all more expressive answer. You should
study it very carefully, since the ideas in it will frequently recur. .

We begin by complexifying the inputs, the response, and the differential equation:

(15) coswt = Re(e™?), sinwt = Im (e*?);
(16) §(t) = n() +iy2(2);
(17) | § +kj = ket

If (16) is a solution to the complex ODE (17), then substituting it into the ODE and using
the rule (u +iv)’ = ' + ' for differentiating complex functions (see Notes C, (19)),

gl +iyh + k(y1 +iy2) = k(coswt + isinwt);
equating real and imaginary parts on the two sides gives
(18) yi + ky1 = kcoswt, Yy + kys = ksinwt;

this shows that the real and imaginary parts of our complex solution §(t) give us respectively
the solution of the two ODE’s in (18).

To solve (17), the integrating factor is e**; multiplying through by it leads to
(ﬂek’t)' = ke(k+iw)t;

integrate both sides, multiply through by e~*t, and scale the coefficient to lump constants
and make it look better:

~ k twt 1
(19) V= %+w° T Itk ©

twt

This is our complex solution; writing the coefficient in polar form as shown on the left below
(you’ll see it’s better to use —¢), we get the complex solution in the form on the right:
1

— Ap—i® i o= A eiwt—9)
1+i(w/k Ae™, j = Ae

(20)
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The modulus A and argument —¢ are calculated by the rules in Notes C:

1 !
@) A= Trem T e
(22) ¢ = arg(l+i(w/k)) = tan~ (w/k).

The real and imaginary parts of this complex response § = Aeilwt=9) give the responses of
the system to respectively the real and imaginary parts of the complex input e*?; thus we
can summarize our work as follows:

First-order Sinusoidal Input Theorem. For the equation y' + ky = kq. we have

coswt Acos(wt — ¢)

response: { Asin(wi—g)

(23) physical input g.: { .
sinwt

where the amplitude A and phase lag ¢ are given by (21) and (22).

6. Sinusoidal oscillations: reference.

The terms in (23) are part of the vocabulary describing a pure, or sinusoidal oscillation:
~one that can be written in the form

(24) A cos(wt — ¢).

|A| is its amplitude: how high its graph rises over the ¢-axis at its maximum points;

¢ is its phase lag: the value of wt for which the graph is at its maximum (if ¢ = 0, the
graph has the position of coswt; if ¢ = 7/2, it has the position of sin wt);

¢/w is its time delay, time lag: how far to the right on the ¢-axis the graph of coswt has
been moved to make the graph of (24); (to see this, write A cos(wt—¢) = Acos(w(t—¢/w));

w is its angular frequency: the number of complete oscillations it makes in a time interval
of length 27;

w/2m (usually written v) is its frequency: the number of complete oscillations the graph
makes in a time interval of length 1;

2w /w or 1/v is its period, the ¢-interval required for one complete oscillation.

The Sinusoidal Identity For any real constants a and b,.

(25) acosf+bsind = A cos(6 — ¢), . A.‘b

where A and ¢ can be described in at least three ways: a
(26) A=|ai+bj|, ¢ is the angle rotating i into dir(ai +bj);
(27) - A=+va?+ b2, ¢ =tan™! g;

(28) at+bi = Ae®.

E \.._L,/(:
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