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Linearization: The nonlinear pendulum and phugoid oscillation 
 
[1]  Nonlinear pendulum 
[2]  Phugoid oscillation 
[3]  Buckling bridge 
 
 
[1] The bob of a pendulum is attached to a rod, so it can swing clear  
around the pivot. This system is determined by three parameters: 
 
      L  length of pendulum  
      m  mass of bob 
      g  acceleration of gravity 
 
We will assume that the motion is restricted to a plane.  
 
To describe it we need a dynamical variable.  We could use a horizontal 
displacement, but it turns out to be easier to write down the equation  
controlling it if you use the angle of displacement from straight down. 
Write  theta  for that angle, measured to the right.  
 
Here is a force diagram: 
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Write  s  for arc length along the circle, with  s = 0   
straight down.  Of course,   
 
      s  =  L theta 
 
Newton's law says 
 
      ms"  =  F 
 
The force has the  - mg sin(theta)  component of the force of gravity 
(and notice the sign!),  and also a frictional force which depends upon 
 
      s'  =  L theta' 
 
Make the simplest model for friction,  - cs' = -cL theta'.  So: 
 
      m L theta"  =  - mg sin(theta) - cL theta' 



 
Divide through by  mL  and we get 
 
      theta" +  b theta' + k sin(theta)  =  0 
 
where  k = g/L  and  b = c/m . 
 
This is a nonlinear second order equation. It still has a "companion  
first order system," obtained by setting   
 
      x  =  theta   ,   y  =  x' 
 
so  y' = theta" = - k sin(theta) - b theta'    or 
 
      x'  =  y 
      y'  =  - k sin(x) - by 
 
This is an autonmous system. Let's study its phase portrait.   
 
Equilibria:  y = 0 ,  sin(x) = 0 ; that is,  
 
      x  =  0 , +-pi , +-2pi , ... 
 
Let's compute the Jacobian: 
 
      J(x,y)  =  [ 0 , 1 ; - k cos(x) , -b ]  
 
When  x = 0 , +-2pi , +-4pi , ....,  cos(x) = 1  and 
 
      J(x,y)  =  [ 0  1 ; -k  -b ]  
 
det = k , tr = -b . Suppose  b  is small, so we get spirals.   
 
When  x = +-pi , +-3pi , ...,   cos(x) = -1  and  
 
      J(x,y)  =  [ 0  1 ; k  -b ] 
 
det = -k , tr = -b : saddles. 
 
Then I revealed the entire phase portrait. It shows another feature common 
to all companion systems:  
 
The trajectories above the  x axis move right, those below move left.  
 
Trajectories coming down from the left represent the pendulum swinging  
around in counterclockwise complete circles. Trajectories coming up from 
the right represent the pendulum swinging around in clockwise circles.  
 
With a student I animated the pendulum swinging around. The successive 
dips represent passing through the vertical position. In very exceptional 
cases, the trajectory heads straight at the saddle equilibria; they  
converge to it exponentially, but most likely miss and move away from 
it exponentially.  The saddles represent the unstable equilibria which are 
straight up. Eventually, the trajectory gets caught in a basin (actually 
it was always in that basin) and spiral in towards the attractor of that 
basin, which is straight down.  
 



 
[2]  Phugoid equation.  
 
The forces on an airplane are like this: suppose the plane is moving 
to the right. It is tipped up a bit, which is hard to draw using ascii. 
 
Along the directon of motion we have the thrust, created by the engines 
Directed downwards we have the force of gravity, AKA the weight of the plane. 
There is a frictional force, which we decompose into two componets: 
Drag is directed against the thrust, 
Lift is directed perpendicularly to the direction of motion. 
 
One can analyze the effect of these forces near equilibrium.  
Write  F  for the thrust   
       g  for the acceleration of gravity 
       m  for the mass of the plane 
       v_0  for equilibrium speed.  
 
At equilibrium the airplane is moving horizontally. 
We study what happens when you are jarred off of equilibruium, by a downdraft 
for example. Then the horizontal component of the velocity is  v_0 + u   
and the vertical component is  w , where  u  and  w  are small relative 
to  v_0 .  
 
      d  | u |     | - 2F/mv_0    -g/v_0  | | u | 
     --  |   |  =  |                      | |   | 
     dt  | w |     |   2g/v_0        0    | | w | 
 
The characteristic polynomial is   
 
       p_A(lambda)  =  lambda^2 + (2F/mv_0) lambda + (2g^2/v_0^2)  
 
Let's use the language of natural frequency and damping ratio: 
 
       p_A(lambda)  =  lambda^2 + 2 zeta omega_n lambda + omega_n^2  
 
so  
 
         omega_n = (sqrt 2) g/v_0  
 
         2F / mv_0 = 2 zeta omega_n = 2 zeta (sqrt 2) g / v_0 
 
         zeta = (1/sqrt(2)) F/mg  
 
Lessons to be learned from this linearization: 
 
(1)  The period of this "phugoid oscillation" depends *only on the equilibrium 
speed* and not on the thrust or mass of the airplane. In units of meters and 
seconds, it comes to about  0.45 v_0 .   
 
Boeing 747 :  260  m/sec :  118 seconds 
F15        :  838  m/sec :  380 seconds 
 
(2)  The damping ratio depends only on *thrust/weight*.  Both  zeta and  
thrust/weight are dimensionless, the same in all units. 
 
The system is underdamped as long as  zeta < 1 , ie  F/mg < sqrt(2)  



Even an F15 doesn't come close to having  F/mg > sqrt(2) ! - so the 
phugoid system is always underdamped: 
 
747 :   F/mg ~ .27 ,  zeta ~ .19 
F15:    F/mg ~ .67 ,  zeta ~ .47 
 
 
[3]  I want to show you this movie.  In the summer of 1940, a bridge was built 
ove the Tacoma Narrows in Washington State. It was a mile long and just 39 feet 
across - an elegant suspension bridge. Very early it acquired the sobriquet 
"Galloping Gerdie," because it would oscillate vertcially in a very exciting 
way. The structural engineers studied this and concluded  that it wasn't 
a problem. But in November, the first winter storm picked up. The bridge 
showed a different behavior now - it wasn't oscillating vertically now, 
it was twisting. Here's a video -  
 
http://www.youtube.com/watch?v=P0Fi1VcbpAI 
 
What happened here? Resonance? The wind was gusting back and forth 
at just the natural frequency of the bridge? Nah. What happens is this: 
 
 
Suppose  theta  is the angle off of horizontal, at some point along  
the bridge.   
 
     theta" + b theta' + omega^2 theta = F 
 
F  depends on the wind velocity,  but look:  When the edge of the bridge tips  
up, the torisonal force from the wind changes.  So perhaps  F  looks like 
 
     F = a(v) theta + c(v) theta' 
 
Actually, it turns out that the dominant contribution is from the  theta' 
term, so let's simplify by just dropping the  theta  term.   
 
So:   theta" + (b-c(v)) theta' + omega_n^2 theta = 0 
 
Now the characteristic polynomial is   
 
    s^2 + (b-c(v)) s + omega_n^2  
 
        = (s + (b-c(v))/2)^2 + omega_d^2  
 
with roots 
 
      r = (c(v)-b)/2 +- omega_d 
 
(The experiment shows the roots are not real!) 
 
It turns out that the shape the graph of  c(v)  is like a  W . For  v  near 
zero,  c(v) < 0 : the effect increases the damping and causes the bridge to 
be MORE stable. At some point  c(v) = 0, which is still OK.  But eventually 
it equals and then surpasses the damping constant  b :  then you get  
effective anti-damping, the real part of the root becomes positive, and  
we get solutions oscillating under increasing exponentials: disaster! 
 
 



MIT OpenCourseWare 
http://ocw.mit.edu 

18.03 Differential Equations

�� 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



