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Linear Phase Portraits: Eigenvalues Rule  (usually) 
 
1. Eigenvalues rule! 
2. Trace-determinant plane 
3. Marginal cases 
4. Stability 
 
 
[1] Phase portrait: this means the  (x,y)  plane (the "phase plane")  
with trajectories of solutions of  u' = Au  drawn on it (with direction of 
time indicated). 
 
These homogeneous linear equations exhibit a nice variety of phase portraits, 
as shown by the Linear Phase Portraits Mathlets. An important fact is this: 
 
EIGENVALUES RULE 
 
We'll classify the linear phase portraits according to the eigenvalues 
of the matrix A . 
 
 
Example: those rabbits again:  A = [ .3 .1 ; .2 .4 ] 
 
p_A(lambda) = lambda^2 - .7 lambda + .1 
 
has roots  lambda_1 = .5 ,  lambda_2 = .2 
 
so we learn that all solutions flee from the origin: the phase portrait  
is a "source."  
 
lambda = .5 : [ -.2 .1 ; .2 -.1 ]  ==>  v_1 = [ 1 ; 2 ]  
 
so one normal mode is  u_1 = e^{.5 t} [ 1 ; 2 ]  
 
If the number of rabbits in MacGregor's field is twice the number in 
Jones's, it stays that way forever after.  
 
lambda = .2 : [ .1 .1 ; .2 .2 ]  ==>  v_2 [ 1 ; -1 ] 
 
so the other normal mode is  u_2 = e^{.2t} [ 1 ; -1 ] . 
 
This is not meaningful in itself in our population model, 
but we can draw it in the phase plane. And the two together provide the 
general solution.  
 
What to the other trajectories look like?  
 
For large  t ,  the  v_1  component is much bigger than the  v_2  component.   
For small  t ,  the  v_1  component is much smaller than the v_2  component. 
 
So near the origin the trajectories become asymototic to the eigenline with 
smaller eigenvalue. 
  
This phase portrait is a NODE. The same kind of picture occurs whenever the  
eigenvalues are real, of the same sign, and distinct. 



 
 
[2] When are the eigenvalues non-real? 
 
[Slide:]   p_A(lambda) = det ( A - lambda I ) 
 
If  A = [ a b ; c d ]  then   p_A(lambda) = lambda^2 - (tr A) lambda + (det A) 
 
      tr(A) = a + d = lambda_1 + lambda_2 
 
     det(A) = ad-bc = lambda_1 lambda)2 
 
To find the eigenvalues, complete the square: 
 
      p_A(lambda) = (lambda - (tr(A)/2))^2 + (det(A) - (tr(A)/2)^2)  
 
so     lambda1,2  =  tr(A)/2 +- sqrt(tr(A)^2/4 - det(A)). 
 
lambda1,2   are not real if  det(A) > tr(A)^2/4 
 
            are equal if     det(A) = tr(A)^2/4 
 
            are real and different from each other if  det(A) < tr(A)^2/4 
 
The boundary is the "critical parabola," where det(A) = tr(A)^2/4. 
 
Notice that if the eigenvalues are complex, the real part is  tr(A)/2.  
If the eigenvalues are real, they have the same sign exactly when their 
product is positive, and that sign is positive if their sum is also  
positive.  Thus: 
 
 
                         det 
 
                          ^   
    .                     |<-----purely imaginary     
     .             complex e.v.s               . 
      .                   |                   . 
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The eigenvalues determine the general characteristics of the solutions. 
 
NODES:  When the eigenvalues are real and of the same sign, but  
distinct, you have a "node." If the sign is positive, 
it's "unstable" or a "source." If negative, "stable" or a "sink." 
 



SPIRALS: when the eigenvalues are non-real, we get spirals.  
Two more comments on this: 
 
(1)  The spirals move IN  when Re(lambda) < 0   "stable spiral" 
                      OUT when Re(lambda) > 0   "unstable spiral" 
 
When Re(lambda) = 0  it turns out that the trajectories are ellipses. 
The technical term for this type of phase portrait is "center." 
 
SADDLES:  When the eigenvalues are real and of opposite sign, the 
phase plane is a "saddle." There are two eigenlines, one with positive  
eigenvalue and the other with negative. Normal modes along one move out, 
and along the other move in. The general solution is a combination of these 
two. 
 
For example  A = [ 1 1 ; 0 -2 ]  has  tr(A) = -1 ,  det(A) = -2 
so the eigenvalues are  lambda1 = 1 ,  lambda2 = -2  
 
Eigenvector for  lambda1  is  again [1;0] , since the first column of 
the matrix is  [1;0] .  
 
For  lambda2  we subtract -2 from the diagonal:  [ 3 1 ; 0 0 ] 
so  v2 = [-1;3] . 
 
The trajecories of other solutions are asymptotic to the eigenline for 
value +1  as  t ---> infinity  and to the eigenline for value  -1  as  
t ---> - infinity. 
 
 
The corresponding phase portraits exhibit the following behaviors: 
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[3]  Marginal cases:  For the most part, the trace and determinant 
determine the name and essential features of the phase portrait, 
but there are some things which require inspecting the matrix itself.  
 
--  det = tr^2/4 ,  along the critical parabola: repeated real eigenvalues. 
 



For example on Friday [Slide] we discussed the matrix  A = [ -2 1 ; -1 0 ] 
and saw that it has eigenvalues  lambda_1 = lambda_2 = -1 ,  
eigenvector  v_1 = [ 1 ; 1 ] , so normal mode  u_1 = e^{-t} [ 1 ; 1 ] 
Then we found a solution  w  to   (A - lambda-1) w = v_1  to be  
w = [ 0 ; 1 ] , and wrote down the extra solution 
 
u_2 = e^{lambda_1 t} ( t v_1 + w ) = e^{-t} [ t [ 1 ; 1 ] + [ 1 ; 0 ] ) 
 
                       = e^{-t} [ t+1 ; t ] 
 
What is this phase portrait like? There are the eigensolutions. 
The solution  u_2  has  u_2(0) = w = [ 0 ; 1 ] .  When  t  increases 
away from zero, the  x-coordinate becomes positive. All solutions decay 
to zero as  t  grows. You can see that as  t increases the trajectory of 
u_2(t)  becomes tangent to the eigenline. It hooks around and comes 
in towards zero from the other direction. This lets you fill out this 
phase portrait, which is called a "defective nodal sink." 
 
This isn't the only thing that can happen if you have a repeated eigenvalue, 
though. What if  A = [ 2 0 ; 0 2 ] , for example? This is upper triangular, 
so the eigenvalues are the diagonal entries, 2 and 2 : repeated. To find 
an eigenvector we subtract  2  from the diagonal entries - you get the zero 
matrix. So every vector is an eigenvector! This is the "complete case." 
Every ray from the origin is the trajectory of a solution. The phase portrait 
is called a "star source." 
 
To summarize: if there is a repeated eigenvalue (in the 2 x 2 case) 
then either: 
the matrix is diagonal, when the matrix is "complete" an the phase portrait 
     is a star,    or 
the matrix is not diagonal, when the matrix is "defective," you have to 
     use the algorithm described above to find a second independent solution, 
     and the phase portrait is a defective node. 
 
Another marginal case is: 
 
det = 0 :  at least one of the eigenvalues is zero. 
If  v  is an eigenvector corresponding to this eigenvalue, then 
the constant vector valued function  u(t) = c alpha  is a solution for 
any constant  c:  there is a line (at least) of constant solutions.  
Several patterns are possible, and they are illustrated in the  
Supplementary Notes. 
 
 
The phase portrait in each one of these borderline cases shows some  
features which are not determined purely by the eigenvalues.  
Another feature for which you need to go back to the matrix is deciding 
on whether a spiral is turning clockwise or counterclockwise.  
(This is independent of the question of whether it is a sink or a source.) 
 
We can tell which you get by thinking about what  u' is at some point. 
A convenient one to pick is  [1;0] :  then  u' = Au = (first column of  A). 
So if the bottom left entry is positive, the spiral is moving  
counterclockwise; if negative, it is moving clockwise. 
 
 
[4] (I did not talk about:)   



Stability: All linear systems fall into one of the following categories: 
 
Asymptotically stable: all solutions ---> 0  as  t ---> infinity 
These systems occupy the upper left quadrant, tr <  0  and  det > 0, 
so the eigenvalues have negative real part. 
 
Unstable: most solutions ---> infinity  as  t ---> infinity 
Saddles and unstable nodes and spirals are examples. 
 
Neutrally stable: all solutions stay bounded as  t ---> infinity 
but most do not ---> 0 . 
These systems occur along the boundary between the other two types: 
-- Along the ray  tr = 0 ,  det > 0, so the eigenvalues are nonzero and  
purely imaginary. The phase portrait is a "center" and the trajectories 
are ellipses. 
-- Along the ray  det = 0 , tr < 0 , so one eigenvalue is zero and the  
other is negative. The phase portrait is a comb.  
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