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Fourier Series III 
 
[1] Differentiation and integration 
[2] Harmonic oscillator with periodic input 
[3] What you hear 
 
 
[1] You can differentiate and integrate Fourier series. 
 
Example:  Consider the function  f(t) which is periodic of period  2pi 
and is given by  f(t) = |t|  between  -pi  and pi.  
 
We could calculate the coefficients, using the fact that  f(t)  is even 
and integration by parts.  For a start,  a0/2  is the average value,  
which is  pi/2. 
 
Or we could realize that  
 
     f'(t) = sq(t)        (except where  f'(t)  doesn't exist) 
 
or what is the same 
 
     f(t) = integral_0^t sq(u) du 
 
and integrate the Fourier series of the squarewave. 
 
NB: it is not true in general that the integral of a periodic function is 
periodic; think of integrating the constant function  1  for example. 
But the integral IS periodic if the average value of the function is zero. 
If you think of this one term at a time, the point is that the integral of   
cos(nt)  is periodic unless  n = 0  and the integral of  sin(nt)   
is always periodic. 
 
Let's compute: 
 
     f(t) = integral_0^t (4/pi) sum_{n odd} sin(nx)/n dx 
   
          = (4/pi) sum_{n odd} integral_0^t sin(nx)/n dx 
 
          = (4/pi) sum_{n odd} [- cos(nx) / n^2]_0^t 
 
          = (4/pi) sum_{n odd} (1/n^2) - (4/pi) sum_{n odd} cos(nt) / n^2 
 
That's it, that's the Fourier series for  f(t).  The constant term is  
a little odd. It's a specific number, but not a sum you can find by 
the geometric series or by telescoping. In fact the only way to evaluate 
it is this way, using Fourier series. Because we know that the constant 
term in the Fourier series for  f(t)  is the average value of  f(t),  
which is  pi/2: 
 
     (4/pi) sum_{n odd} (1/n^2)  =  pi/2        or 
 
     sum_{n odd} (1/n^2)  =  pi^2 / 8 . 
 
That is, 



 
(odd)^2:       1 + 1/3^2 + 1/5^2 + 1/7^2 + ...    =  pi^2 / 8. 
 
Just to carry this one step further:  Try to sum all the reciprocal squares. 
 
(2 x odd)^2:   1/2^2 + 1/6^2 + 1/(10)^2 + ...     =  (1/4) pi^2 / 8 
 
(4 x odd)^2:   1/4^2 + 1/(12)^2 + 1/(20)^2 + ...  =  (1/4)^2 pi^2 / 8  
  
... 
 
so    sum 1/n^2 = ( 1 + 1/4 + (1/4)^2 + (1/4)^3 + ... ) pi^2 / 8 
 
The first factor is a geometric series: 
 
     1 + 1/4 + (1/4)^2 + ... = 1/(1 - (1/4)  =  4/3            so 
 
       1 + 11/2^2 + 1/3^2 + 1/4^2 + ...  =  pi^2/6 
 
This is one of the most famous equations in all of mathematics. 
It made Euler's reputation when he discovered it in 1736.  
 
So we learn two things from this calculation: this interesting mathematical 
formula, and the calculation of the Fourier series for  |t|  extended 
periodically: 
 
     f(t) = pi/2 - (4/pi) sum_{n odd} cos(nt) / n^2 . 
 
 
[2]  Harmonic oscillator with periodic forcing. 
 
Now we come to the relationship with differential equations: 
 
We have a complicated wave, perhaps a square wave,  f(t) .   
We drive a harmonic oscillator with it: 
 
      x" + omega_n^2 x  =  f(t) 
 
What is the system response? We might imagine the system as a radio tuner; 
f(t)  represents the radio wave, and  x  represents the output of the 
receiver.  
 
Remember [Slide]:       x" + omega_n^2 x  =  cos(omega t) 
 
has sinusoidal solution  x_p  =  A cos(omega t)/(omega_n^2 - omega^2)  
 
and                  x" + omega_n^2 x  =  sin(omega t) 
 
has sinusoidal solution  x_p  =  A sin(omega t)/(omega_n^2 - omega^2)  
 
When the denominator vanishes we have resonance and no periodic solution. 
 
 
Well, by Superposition III we can now handle ANY periodic input signal. 
For example, suppose 
 
    f(t)  =  sq(t)  =  (4/pi) (sin(t) + (1/3) sin(3t) + ... ) 



 
Then we will have a particular solution 
 
    x_p   =  (4/pi) (sin(t)/(omega_n^2 - 1) + sin(3t)/(omega_n^2 - 9) + ... ) 
 
I showed the Harmonic Frequency Response applet. This applet actually 
shows the system response of a spring system driven through the spring, 
so it is 
 
     x" + omega_n^2 = omega_n^2 f(t)  
 
so when  f(t) = sin(t) ,  x_n = omega_n^2 sin(t) / (omega_n^2 - 1)  
 
with amplitude   omega_n^2 / (omega_n^2 - 1) .   This is the "RMS" graph. 
 
When  f(t) = sq(t) ,   
 
   x_p  = omega_n^2 (4/pi) (sin(t)/(omega_n^2 - 1) +  
                              sin(3t)/(omega_n^2 - 3^2) + ... ) 
 
There is resonance when   
 
     omega_n = 1, 3, 5, ...  
 
but NOT when  omega_n = 2, 4, 6 , ... 
 
When  omega_n  is very near to but less than  k^2 ,  k odd,  the term 
 
     sin(kt)/(omega_n^2 - k^2)   
 
is a large negative multiple of  sin(kt) .  This appears on the applet. 
 
Then when  omega_n  passes  k^2  the dominant term flips sign and becomes 
a large positive multiple of   sin(kt) . 
 
 
[3] Let's write   omega = pi/L  for the fundamental circular frequency of the 
periodic function  f(t).  The Fourier series   
 
f(t) = a0/2 + a1 cos(omega t) + a2 cos(2 omega t) + ... 
            + b1 sin(omega t) + b2 sin(2 omega t) + ... 
 
can be rewritten in polar form as 
 
f(t) = A0 + A1 cos(omega t - phi1) + A2 cos(2omega t - phi2) + ... 
 
If you think of this as the pressure variation at your eardrum, 
the  A0  is atmospheric pressure. What you hear is the rest.  
 
I showed the Fourier Coefficients: Complex with Sound Mathlet.  
 
Notice how dramatically the phase alters the waveform.  
 
It turns out that your ear hears only the amplitudes of the various 
fourier components, or harmonics, not their relative phases.  
Just listen .... 
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