18.03 C ass 18, March 14, 2010

Applications in Engineering: Avisit by Professor KimVandiver

[1] Danping ratio
[2] Measuring the danping ratio

[3] Cell phones on vibrate
[4] Extracting energy froma river

[1] HM In this unit, we've been studying the equation controlling a
spring system

mx" + b x'" + k x = F_ext

We began by thinking about the honpbgeneous case, the
unforced or free system If the system has any danpi ng, then al

these solutions die off; they are transients. This equation is surely
too sinple to be of any use in an engi neering context, isn't it?

KV: | use this every day. This is the oscillator equation. If it nmnakes noise,

it vibrates.
How do you descri be the solutions?

HM We factored the characteristic pol ynom al p(s) = ms”"2 + bs + k
to analyse this. Factor out the m and conplete the square:

p(s) = m(s”2 + (b/m s + (k/m) =n( (s + k/I2m~2 + (k/m- (b/2m~2 )

If kim> (b/2m~2 the roots are imaginary, the systemis *underdanped*.
Is that an engineering termtoo?

KV: Yep, and that's the only situation in which you get vibrations.
So lets study that case today.

HM OK So the root in that case are -b/2m +- i onega d
onega d = sqrt( kim- (b/2m"2 )

So the general solution to this honbgeneous equation is



X p =AeM-bt/2nm cos(onega_d t - phi )

Does that | ook famliar?

KV: Well it's famliar, but now |l begin to realize why students | ook at ne
and say hunh? | use different notation.

When there's no dampi ng you get the undanped, natural frequency

onega n = sqrt(k/m

Let's take onmega_d and factor out the quantity onega_n :

onmega_d = omega_n ( 1 - (b/(2 omega_n m)"2 )

which | could wite as

= onega n ( 1 - zeta”2)

wher e Zeta is called the *danpi ng rati o*.

HM Let's try to re-express the original equation in terms of this zeta .
Where's your expression for zeta? Ah, it's there; zeta satisfies

b/ (2 m = omega_n zeta.
So plugging back into the differential equation gives

n

x" + 2 zeta onmega_n x' + onmega_n*2 x =0 .

Now you can see that critical danmping occurs when zeta =1 ,
under danped when zeta < 1 . And we can wite the solutions in terns of zeta :

x_h = A er-onega_n zeta t} cos( onmega_d t - phi )

By the way, what are the units of this =zeta thing? |I nean, onmega_n has
units 1/sec . What about zeta ?

KV: Well, I'd look at the exponent, which nust be dinmensionl ess.
Since t is in seconds, onega nt is already dinensionless, so

zeta nmust be too.

HVM You nean if | switched fromnetric to feet and hours, the nunber



zeta woul dn't change?

KV: Yep, that's what it neans.

[2] Let's try to nake a measurenent of the danping ratio here. We'll hang
a spring, draw the neutral position, draw the spring back, let it go,

and see how long it takes to execute 10 cycl es.

The stopwatch reads 14.2 sec . So the period, which I wite tau and
which is witten P in this class, is 1.42 sec/cycle.

So 1/P = danped natural frequency in Hertz = cycles/sec , or about 0.7 Hz.

HM We've al ways been tal ki ng about circular fequency.

KV: Yes: onega_d = 2 pi (1/P) which cones out to about 4.3 radians/sec.

HM OKI So we've figured out onmega_d by observation. Can we get the
system constants onega_n and zeta ?

KV: As a vibration engineer, | have a quick and dirty formnul a:

zeta ~ 0.11 / n_50%

where n_50% is the nunber of cycles it takes for the anplitude to
decay by 50%

HV OK ... well let's neasure that.

KV: Let's pull the weight down to here, and count how many cycles it takes till
it comes down only half way. By the way, rubber bands are very nonlinear.

HM  Shhh.

KV: Looks |ike about 4 cycl es.

HVM ... so zeta ~ .11/4 ~ .025 ..

KV: Yes. As engineers say, that's two and a half percent danping,
2.5% of critical danping.

HM So where did this .11 come fron? First lets graph this solution
First I'll draw the exponential decay and its negative: + e*{-zeta onega_ n t}.



This gets multiplied by a del ayed cosine, cos(onmega_d t - phi)
| don't want to try to control what the delay is. The tinme gap between

pl aces where it becomes zero is half the period. But were measuring the
bottonms. They don't occur quite where the danped oscillation touches the

exponential - the slope isn't zero there. W have to be a little nore
careful. Think about what happens when | differentiate

X p = A er-zeta onmega_n t} cos( onega d t - phi )
using the product rule. You get two ternms. Both will contain e"{-bt/2n}

One will contain cos(onega_dt - phi) , the other sin(onmega_d t - phi).

But any l|inear conbination of those two sinusoids is another sinusoid of
the sanme circul ar frequency! so

Xx_p' = A erf-zeta onega_n t} cos( onega dt - phi' )

The di stance between places where this is zero is AGAIN half the period,
so the tine gap between successive mnina is the period P

Wen t increases by P, what happens to the anplitude A e*{-zeta omega_n t}?
Ans: it gets nultiplied by

en{-zeta onega_n P}

So after n cycles it gets multipled by e”{-n zeta onega n P} . So:

1/2 = eM- zeta onega_n P n_50%}

Take natural | ogs:

In(2) = zeta onega_n P n_50%.

P = 2pi/omega_d = 2pi/(omega_n sqrt(1l-zetanr2))

When zeta is small, 1 - zeta™2 is very close to 1; onmega_d is very close
to onega_n , so, to good approxinmation, we can replace onega_d by onega_n.
Put this in:

In(2) ~ zeta onega_n (2pi/omega_n) n_50% = 2pi zeta n_50%

or zeta ~ (In(2)/2pi) / n_50%



And now [In(2)/2pi = 0.1103178 ...

This is the nysterious .11 .

KV: This oscillator equation applies to many things. This string when it
vi brat es has nany nodes. The fundanental |ooks |ike half a sine wave,
which is controlled by the sanme equati on as before, and we can neasure
its danping ratio.

HM So the string is controlled by a much nore conplicated equation, it
has infinitely many degrees of freedomand is described by a PDE, but
neverthel ess its properties can be understood using the sinple spring
system we' ve been studyi ng.

KV: So if | pull this back and count the nunber of cycles to half
anplitude .... | count about n_50%~ 5 ... so what's the danpi ng?
zeta ~ .11/5 ~ .02

HM Amazing - so this spring systemand this string have sonething in
common - they both have danping of 2% or so.

[3] Now, how about forced vibrations?

KV: How does a cell phone vibrate? Inside there's a little notor
and on the shaft there's an off-center nass. Here's a DC notor with a

mass on the shaft. You can see it in the docunent canera.

A "squiggle pen" works the sanme way.

Here is a beam a steel ruler. It has its own natrual frequency, which is
determined by its length - it goes |like one over length squared - so

when you nake the length just right the natural frequency would be the
same as the frequency of this squigglepen which is attached to the end

of it. W can see this with the help of a strobe light. So dimthe |ights,
and 1'll keep changing the length of the beam... till it appears to be
permanently bent. You can see the weight, stop action, too.

Now, what if you didn't have a strobe handy, but you wanted to neasure
the frequency of the squiggle pen

You can measure it with the ruler, if you can predict the natural frequency
of the ruler. There's a fornuala for this in terns of the shape of the
beam and property of the steel it's nade of. It turns out that



onega_n is proportional to 1/L"2 where L is the length. For this beam

onega_n = 3.706/L"2 .

HM So it's a ruler.

KV: Yes, it's a frequency ruler. In the old days they had these things
mar ked out in Hertz.

Checki ng the squiggle pen again, with the strobe, we find resonance
- the ruler |ooks very bent.

HvM Can you bend spoons too?

KV: When you neasure the length, you find a frequency.

HVM So if you had the strobe going half as fast, it would | ook just the
same, would't it?

KV: Well you should double the rate of the strobe: you should then see
two fixed inages.

HV We've tal ked a | ot about what happens to a fixed system when you vary
the frequency of the input signal: you get one of these anplitude
response curves. Here what's happening is a little bit different: the

i nput signal (fromthe squiggle pen) is fixed, and you are varying the
system paraneters (the length of the ruler).

But still, when the two frequencies get close you see near resonance.

Thank you, Professor Vandiveer. Your research involves vibration
doesn't it?

Yes. | study structures in the ocean. |Inmagine you have a cylinder

(3 feet long, D= 3 inches in dianeter), nounted on springs so it can nove
up and down. Water is flowi ng past the cylinder with velocity U.

In the wake of the cylinder vortices are shed, eddies. The frequency

of the vortex shedding is approxi mately

f S = .2UD

If the cylinder were an oil well pipe, D would be about 1 neter;



1 neter per second is a pretty nornmal speed of water noving in the
ocean; so then you expect to see oscillations with frequency .2 Hz.

The vortex shedding causes a force on the cyclinder transverse to the
direction of the water flow

Using this one can extract power froma river. Here is a filmthat
shows a way to do it. Instead of a dashpot, you have a generator

sucki ng energy out of the system

HM You woul dn't want to be under one of those things, they |ook |ike
they have a | ot of power.

KV: Yeah, it looks |ike you could chop carrots with them

HM | was thinking of stanmping wine ...

Thank you very much, Professor Vandiver.



MIT OpenCourseWare
http://ocw.mit.edu

18.03 Differential Equations] [I
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	file:///C|/Documents%20and%20Settings/cc_ashams/Desktop/c18-transcript.txt

	MIT18_03S10_c18_transcript.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cc_ashams/Desktop/18.03/c18-transcript.txt





