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Linearity and time invariance 
 
[1] RLC 
[2] Superposition III 
[3] Time invariance 
[4] Review of solution methods 
 
 
[1] We've spent a lot of time with  mx" + bx' + cx = q(t) . There are many 
other systems modeled by this equation. For example here is a series  
RLC circuit: 
 
           ____ 
          /    \                                          || 
   ------(      )-----/\/\/\/-----------------------------||------ 
  |       \____/                                          ||      |          
  |                                                               |           
  |                                                               | 
  |_______________________________________________________________| 
 
 
       I   = current; the same everywhere 
       V   = voltage increase across the power source 
       V_R = voltage drop across the resistor 
       V_C = voltage drop across the capacitor 
 
 
Input signal:     V 
System response:  I 
 
 
KVL:   V_R + V_C = V          
 
Component behavior:  
 
       V_R  = R I             V_C' = (1/C) I 
 
Differentiate KVL :           V_R' + V_C' = V' 
 
so                         R I' + (1/C) I = V' 
 
In Lecture 3 we offered this as an example of a first order LTI system.  
 
Now let's add another component, an inductor.  
 
 
           ____ 
          /    \                      __ ___ __           || 
   ------(      )-----/\/\/\/--------/  X   X  \----------||------ 
  |       \____/                        V   V             ||      |     
  |                                                               |           
  |                                                               | 
  |_______________________________________________________________| 
 
 



 
The voltage drop across an inductor depends not on the current but rather on  
the derivative of the current: 
 
       V_L = L I'         so  V_L' = L I"  . 
 
KVL now says           V_L + V_R + V_C = V  
 
so               L I" + R I' + (1/C) I = V'    (*)         
 
 
The system serves as an OPERATOR:   
 
                 L D^2 + R D + (1/C) Id               
 
takes the current  I , as a function of time, and gives the derivative 
of the impressed voltage. (I have to use a different symbol for the identity  
operator here, so it doesn't get confused with current. I chose "Id.") 
 
 
[2]  Suppose you want to solve  u" - 4u = cosh(2t)  
 
Remember, I can write the left hand side as  p(D) u  where  p(s) = s^2 - 4 . 
 
First you have to know what  cosh(t)  is :   
 
        cosh(x) = ( e^x + e^{-x} ) / 2 
        sinh(x) = ( e^x - e^{-x} ) / 2 
 
The right hand side is a linear combination of exponentials, each of 
which we know very well how to deal with.  
 
 
Superposition III:  p(D) ( c_1 x_1 + c_2 x_2 ) = c_1 p(D) x_1 + c_2 p(D) x_2 
[Slide] 
 
Therefore, if   p(D) x_1 = q_1(t)  and  p(D) x_2 = q_2(t), then  
 
x = c_1 x_1 + c_2 x_2   solves   p(D) x = c_1 q_1(t) + c_2 q_2(t)  
 
 
Proof of Super III: [Slide] 
 
           p(D) x = a_n x^(n) + ... + a_1 x' + a_0 x 
 
       a_0 ]   x  = c_1 x_1  + c_2 x_2 
       a_1 ]   x' = c_1 x_1' + c_2 x_2' 
       a_2 ]   x" = c_1 x_1" + c_2 x_2" 
                 . . . 
      --------------------------------------------------- 
           p(D) x = c_1 p(D) x_1 + c_2 p(D) x_2  
 
 
So we should solve separately:  u_1" - 4u_1 = e^{2t} , u_2" - 4u_2 = e^{-2t} 
 
Try to apply ERF:  p(s) = s^2 - 4 , p(2) = 0  and  p(-2) = 0 :   
so we must use ERF/R :  p'(s) = 2s , p'(2) = 4 , p'(-2) = -4 , 



 
      u_1 =  te^{2t}/4     solves  u_1" - 4u_1 = e^{2t} 
      u_2 = te^{-2t}/(-4)  solves  u_2" - 4u_2 = e^{-2t} 
 
so   u = (t/4) ( e^{2t} - e^{-2t} ) / 2  = (t/4) sinh(2t)   is a solution. 
 
 
Super III contains the earlier episodes.  
With  q_2 = 0 , this gives us "Superposition II," 
With  q_1 = 0  and  q_2 = 0 , we get" Superposition I." 
 
The property Superposition III says that p(D)  is a LINEAR OPERATOR. 
 
 
[3] You may be worried that we always say that we are interested in  
sinusoidal input, but then we always consider  A cos(omega t) , with no 
phase lag. Isn't that kind of restrictive?  
 
Ans: No. Here's why. 
 
First, if the right hand side is a sine, there is a special thing you can do: 
 
Example:    x" + 9x = sin(2t)  
 
This is the IMAGINARY part of  z" + 9z = e^{2t}  :   p(s) = s^2 + 9 , 
p(2i) = 9 - 4  ,  z_p = e^{2it} / (9-4) ,  so   
x_p = Im ( e^{2it}/(9-4)) = (1/(9-4) sin(2t) 
 
 
This is worth remembering, by the way: if you drive a harmonic oscillator, 
there is no phase lag: 
 
x" + omega_n^2 x = cos(omega t) :  x_p = cos(omega t) / ( omega_n^2 - omega^2 ) 
 
x" + omega_n^2 x = sin(omega t) :  x_p = sin(omega t) / ( omega_n^2 - omega^2 ) 
 
 
But there is a better and more general reason: 
We are studying the response of a system which 
is not changing: the coefficients are constant. So if I start the signal 
a little bit later, all that happens is that the system response is  
correspondingly delayed.  
 
If we shift the graph of a function  x(t)  to the right by    
a  units, we get the graph of the function  x(t-a) .   
 
 
TIME INVARIANCE:   If  p(D) y(t) = q(t) ,  then  p(D) y(t-a) = q(t-a) 
[Slide] 
 
To solve  p(D) x = q(t-a) , first solve  p(D) y = q(t) .  Then  x(t) = y(t-a). 
 
It's very important that the coefficients are *constant* for this to work. 
 
 
Example:   x" + x' + 6x = cos( 2t - pi/3 )  
 



Method: (1) Rewrite the right hand side as  f(t-a):   
 
cos( 2t - pi/3) = cos( 2(t - pi/6)) so  f(t) = cos(2t)  and  a = pi/6 . 
 
(2) Solve  y" + y' + 6y = f(t) = cos(2t) ;  
 
z" + z' + 6z = e^{2it}  ,    
 
p(s) = s^2 + s + 6 ,   p(2i) = -4 + 2i + 6 = 2 + 2i = 2sqrt(2) e^{i pi/4},  
 
z_p = e^{2it} / 2(1+i) = (1/2sqrt(2)) e^{- i pi/4} e^{2it}  
    = (1/2sqrt 2) e^{i(2t - pi/4)} ,  
 
y_p = Re(z_p) = (1/2sqrt 2) cos(2t - pi/4)  
 
(3) Then a solution to the original equation is   
 
x(t) = y(t-a) = y_p(t - pi/6) = (1/2sqrt 2) cos(2(t - pi/6) - pi/4) .  
                              = (1/2sqrt 2) cos((2t - pi/3) - pi/4) .  
 
Be careful here:  the  (t - pi/6)  goes in place of  t , so gets multiplied 
by the circular frequency.               
 
 
In any case: [Slide] The amplitude and the phase lag of the solution to  
 
p(D) x = A cos(omega t - phi_0) 
 
depend only on  omega  and  A , and not on  phi_0 . 
 
 
If there is a system you are studying, it has a gain and a phase lag, 
functions of the circular frequency of the input signal. These are the same 
for any sinusoidal input with the given frequency. They don't depend on 
amplitude or phase of input. 
 
 
[4] Brief summary of solution methods 
 
We are looking at LTI operators.  Solutions  x_h  of  p(D) x = 0  are linear 
combinations of  e^{rt}  where  r  is a root of the characteristic 
polynomial: "modes." If r is a double root you have to add  te^{rt}   
(and so on). If  r = a+bi  is a non-real root (and  p(s)  has real  
coefficients) the  r-conjugate is also a root, and these two conjugate  
modes combine to give  e^{at} cos(bt)  and  e^{at} sin(bt) .  
 
If all roots have negative real part, then all these solutions decay to 
zero as  t ---> infinity : they are transients. 
 
To solve  p(D) x = q(t) , find some solution  x_p ; then the general solution 
is  x_p + x_h : all solutions converge as  t ---> infinity. 
 
q(t) = e^{rt} : ERF or ERF/R 
 
q(t) = cos : complex replacement reduces to exponential input signal. 
 
q(t) = exp x cos : ditto. 



 
q(t) = sinusoidal : use time invariance to shift to cosine. 
 
q(t) = polynomial : undetermined coefficients, preceded by reduction of 
                    order if necessary 
 
q(t) = (anything) x exponential : variation of parameters leads to a  
                    new differential equation in which the exponential has 
                    been eliminated from the right hand side.  
                     
q(t) = linear combination: Superposition III . 
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