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Complex gain 
 
1. Recap 
2. Phase lag 
3. Driving via the dashpot 
4. Complex gain 
 
 
[1] The story so far:  We're studying solutions of linear constant coefficient 
equations  
 
             a_n x^(n) + ... + a_1 x + a_0 = q(t)    (*) 
 
A key is the characteristic polynomial 
 
       p(s) = a_n s^n + ... + a_1 s + a_0 
 
For the homogeneous case,  
 
             a_n x^(n) + ... + a_1 x + a_0 = 0       (*)_h 
 
we found that the roots of  p(s)  give the exponents in exponential solutions, 
and that the general solution is a linear combination of these or (these 
times a power of  t  in case there are repeated roots). 
Euler's formula shows that 
 
           |e^{(a+bi)t}| = e^{at}  
 
so: [Slide] 
 
       Transience Theorem: 
       All homogeneous solutions of (*)_h decay to zero provided that all the  
       roots of  p(s)   have negative real parts. 
 
In this case the solutions to  (*)_h  are called "transients," 
By superposition, all solutions to (*) converge together  
as  t  gets large, and we say that the equation is "stable."  
 
If we have a system modeled by a stable equation, and we are only 
interested in what it looks like after the transients have died down,  
we can eliminate the initial condition: 
 
 
                         ____________         
          input         |            |       steady state 
       ---------------->|   System   |-------------------------> 
          signal        |____________|       output signal 
                                                 x_p    
 
 
So we look for a particular solution  x_p .  Sinusoidal input signals are 
of particular importance. Experiments indicate that sinusoidal in  
gives sinusoidal out. We decide to set our clock so that the input signal is 
 
         input = A cos(omega t) 



 
Experiments indicate that the steady state output signal is again sinusoidal, 
of the same circular frequency: 
 
         output = x = B cos (omega t - phi) 
 
A consequence of linearity of the system is that  B  is proportional to  A: 
 
         x = g A cos (omega t - phi)  
 
So there are just two numbers I need to know, in understanding this kind 
of system: 
 
                the "gain"  g          and  
                the phase lag  phi.   
 
Both of them will depend upon the input circular frequency  omega .  
 
 
[2]  Polar treatment of example from Wednesday:  
 
       x" + x' + 2x = cos(t)          p(s) = s^2 + s + 2 
 
The default is to regard the right hand side as the input signal, 
and  x  as the output. We are looking for the steady state solution. 
Make the complex replacement: 
 
       z" + z' + 2z = e^{it}          p(i) = - 1 + i + 2 = 1 + i  
 
       z_p = e^{it}/(1+i)             from ERF, [Slide] 
 
Rectangular solution:   1/(1+i) = (1-i)/2 
 
       x_p = Re(z_p) = (1/2) cos(t) + (1/2) sin(t) 
 
We used the triangle to rewrite this in polar form:                       
 
       x_p = (sqrt(2)/2) cos (t - pi/4)  
 
This expression gives more insight: the amplitude is  sqrt(2)/2 ~ 0.707  times 
the amplitude of the input signal - the gain is  sqrt(2)/2 - and the steady 
state system response lags  pi/4  radians or  1/8  cycle behind the input 
signal.   
 
I want to show you how you can get to this information directly,  
by passing to polar coordinates earlier. So we start from  
 
       z_p = e^{it}/p(i)  
 
and calculate 
 
       p(i) = 1+i = sqrt(2) e^{i pi/4) 
 
       z_p = e^{it}/p(i) = (1/sqrt(2)) e^{-i pi/4) e^{it} 
 
                         = (sqrt(2)/2) e^{i(t - pi/4)} 
 



       x_p = Re(z_p) = (sqrt(2)/2) cos(t - pi/4)  
 
-- much more efficient. 
 
 
Question 14.1. In this equation, if  m  and  k  are left alone 
and the damping constant  b  is increased from 1, the phase lag 
 
1. increases and I can see why from the mathematics 
2. increases but I only see this from physical reasoning 
3. decreases and I can see why from the mathematics 
4. decreases but I only see this from physical reasoning 
5. stays the same and I can see why from the mathematics 
6. stays the same but I only see this from physical reasoning 
7. don't know 
 
Ans: the only effect of  b  is to produce the imaginary part of  p(i) . 
If it increases, then the argument of the complex number  p(i)  increases, 
The argument of  p(i)  is the phase lag in this example, and that increases. 
 
[The class was on board with this one.] 
 
 
Question 14.2. In this equation, if  m  and  k  are left alone and 
the damping constant b  is increased from 1, the amplitude of the solution 
 
1. increases and I can see why from the mathematics 
2. increases but I only see this from physical reasoning 
3. decreases and I can see why from the mathematics 
4. decreases but I only see this from physical reasoning 
5. stays the same and I can see why from the mathematics 
6. stays the same but I only see this from physical reasoning 
7. don't know 
 
The amplitude of the solution is  1/|p(i)| .  p(i)  increases if  b  increases, 
so  1/|p(i)|  decreases. 
 
[This was harder. Both classes discussed it. I think the mistake was 
forgetting that you *divide* by p(i omega).] 
 
 
[3] Another way to drive the spring system: though the dashpot: 
 
 
     |                    ______ 
     |                   |      |     ----------------|      
     |---\/\/\/\/\/------|      |---------=======     |------- 
     |                   |______|     ----------------|   | 
     |                      |                             | 
     |                      |---------->                  |--------->  
                            |     x                       |     y 
 
 
Now the force on the mass exerted by the dashpot is  b(y-x)' : 
 
         m x" + bx' + kx = by'            (*) 
 



Input signal:     y  
System response:  x 
 
Notice! the right hand side is not the input signal; it's not even a multiple 
of the input signal.  
 
Again let's think about driving this system sinusoidally;   
 
                   y = A cos(omega t) . 
 
We know we will analyze this by making a complex replacement.  
Let's take the next step, push the complex replacement back even farther, 
and replace the input signal itself with a complex exponential signal: 
 
                 y_cx = A e^{i omega t} 
 
Now solve (*)  with  y_cx  in place of  y : 
 
         m z" + b z' + k z = b y_cx' = b A i omega e^{i omega t} 
 
ERF      z_p = b A i omega e^{i omega t} / p(i omega} 
 
where    p(i omega) = (k - m omega^2) + b i omega 
 
 
[4] Define the *complex gain* as the complex number you multiply the complex 
exponential input by in order to get the complex exponential system response: 
 
         z_p = H(omega) y_cx 
 
In this case it is  
 
         H(omega) = b i omega / p(i omega) 
 
Now, to return to original equation we pass to real parts: 
 
         x_p = Re ( H(omega) e^{i omega t} ) 
 
Let's compute the real part using the polar approach as in [1]. 
The following calculation works in general, not just for this particular 
case.  
 
         H(omega) = |H(omega)| e^{- i phi} 
 
so  - phi  is the argument of  H(omega) .  Then 
  
         z_p = A |H(omega)| e^{- i phi} e^{i omega t} 
 
             = A |H(omega)| e^{i(omega t - phi)} 
 
Now when I take real parts,  
 
         x_p = A |H(omega)| cos(omega t - phi) 
 
So:     |H(omega)|       is the gain of the system 
 
        - Arg(H(omega))  is the phase lag of the system. 



 
(and that accounts for my choice to write  - phi  for  Arg(H(omega)) .) 
 
This last conclusion is not special to this particular system; it is a 
general fact. 
 
I demonstrated the Mathlet  Amplitude and Phase: Second Order II. 
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