
18.03 Problem Set 9


I encourage collaboration on homework in this course. However, if you do your homework 
in a group, be sure it works to your advantage rather than against you. Good grades for 
homework you have not thought through will translate to poor grades on exams. You 
must turn in your own writeups of all problems, and, if you do collaborate, 
you must write on the front of your solution sheet the names of the students 
you worked with. 

Because the solutions will be available immediately after the problem sets are due, no 
extensions will be possible. 

IV. First order systems 

L34 F 30 Apr Complex or repeated eigenvalues: EP 5.4, Notes LS.3.

L35 M 3 May Qualitative behavior of linear systems; phase portrait: SN 26.

R23 T 4 May Linear phase portraits.

L36 W 5 May Normal modes and the matrix exponential: EP 5.7, Notes LS.6.

R24 Th 6 May Matrix exponential.

L37 F 7 May Nonlinear systems: EP 7.2, 7.3; Notes GS.


Part I. 34. (F 30 Apr) Notes 4D-2. EP 5.6: 1. (You might use Linear Phase 
Portraits: Matrix Entry to construct the phase portrait.) 

35. (M 3 May) Notes 5B-4. (This can also be checked using the same applet.) 

36. (W 5 May) EP 5.7: 1, 3. 

Part II. 

34. (F 30 Apr) [Complex and repeated eigenvalues] 

(a) The population of long-tailed weasels and meadow voles on Nantucket Island has been 
studied by biologists. They measure the populations relative to a baseline, in hundreds 
of animals. So x(2) = 5 means that at t = 2 there are 500 more weasels than the baseline 
value, and y(2) = −5 means that at t = 2 there are 500 fewer voles than the baseline 
value. 

Biologists from MIT have established the following relationship between x(t) and y(t): 

ẋ = (0.5)x + y , ẏ = −(2.25)x + (0.5)y 

So the natural growth rate for each species is 0.5, and cross terms show that more voles 
are good for weasels but more weasels are very bad for voles. 
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Work out the population evolution predicted by this model. (Linear Phase Portraits: 
Matrix Entry may be useful to you in visualizing this.) What are the eigenvalues? For 
one eigenvalue, find the exponential solution of u̇ = Au. Then take the real and imaginary 
parts to produce two real solutions. Suppose that at t = 0 there are 100 more weasels than 
baseline, and the vole population is the baseline value. What is the solution to this initial 
value problem? Is the number of weasels increasing at t = 0? How about the number 
of voles? When does the number of voles next equal its baseline value (if ever)? Please 
sketch the phase portrait and the graphs of x(t) and y(t) (for this initial condition) for t 
between about −2 and +2. Make it clear how these three pictures are related: indicate 

x(t) kπ 
on the trajectory the position of 

y(t) 
when t = 

3 
for k = −2, −1, 0, 1, 2. 

(b) Invoke the Mathlet Linear Phase Portraits: Matrix Entry. Play with the tool 
for a while to get a feel of it. Notice that the eigenvalues can be displayed on the complex 
plane. Deselect the [Companion Matrix] option, so you can set all four entries in the 
matrix. Select the [eigenvalues] option, so the eigenvalues become visible by means 
of a plot of their location in the complex plane and also a read-out of their values. � � 

Set the sliders so that A = 
1 
0 

b 
1 

. Watch what happens to the phase portrait as b 

varies from −4 to 4. For each value of b, the applet suggests a pair of eigenvalues; verify 
what it claims. For each value of b, describe the collection of all eigenvectors for each 
eigenvalue. (This description will depend upon b.) For each value of b, write down all the 
normal mode solutions (i.e. all the solutions of the form eλtv, where λ is a number and 
v is a vector). If the system is defective, find a complementary solution. Take one value 
of b for which the system is complete and sketch the phase portrait. Take one value of b 
for which the system is defective and sketch the phase portrait. 

35. (M 3 May) [Qualitative behavior of linear systems]


We will use Linear Phase Portraits: Matrix Entry to investigate the phase portraits

a 

of the homogeneous linear equation u̇ = Au, where A = 
−3 

, as a varies. The 
1 −1 

focus is now on the colorful diagram at the upper left. To start with, set the matrix to 

A = 
−4 −3 

. Then move the a slider up to a = 4, and watch (1) the movement 
1 −1 

of the mark on the (Tr,Det) plane; (2) the movement of the eigenvalues in the complex 
plane; and (3) the variation of the phase portrait. 

(a) Compute the trace and determinant of A. (They will depend upon a, of course.) 
Find an equation for the curve (or line) traced out by the mark on the (Tr,Det) plane. 

(b) You notice that the curve in the (Tr,Det) plane enters a number of different regions. 
When the cursor crosses a red boundary, the trajectories and the eigenvalue indicators 
turn red. Work out what the values of a are at those crossings. (So this is: where 
det A = 0, where det A = (trA/2)2 (twice, once not represented on the Mathlet), and 
where trA = 0. 

(c) There are nine phase portrait types represented as a varies (five regions and four 
walls). Draw an interval from −5 to +4. On it, mark the four values of a at which the 
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matrix crosses one of the walls. Indicate the type of phase portrait you have at each 
of the marked points and along the intervals between them. That is, classify the phase 
portrait into one of the following types, as in the Supplementary Notes, §25: spiral (sta­
ble/unstable, clockwise/counterclockwise), node (stable/unstable); saddle; center (clock­
wise/counterclockwise); star (stable/unstable); defective node (stable/unstable; clock­
wise/counterclockwise); degenerate (comb (stable/unstable), constant, parallel lines). 
(The applet uses the alternative terms “source” and “sink” for “unstable” and “stable.”) 

(d) For each of the four special values, and for your choice of one value in each of the 
five regons, make a sketch of the phase portrait. Be sure to include and mark as such 
any eigenlines, and the direction of time. 

36. (W 5 May) [Exponential matrix] 

(a) Following Recitation 21, Problem 4, a complex number z = a+bi determines a matrix 

A(z) in the following way: A(a + bi) = 
a −b 

. This matrix represents the operation 
b a 

x v 
of multiplication by z, in the sense that if z(x + yi) = v + wi then A(z) = . 

y w 
What is eA(z)t? What is A(ezt)? 

(b) Say that a pair of solutions x1(t), x2(t) of the equation mẍ+bẋ+kx = 0 is normalized 
at t = 0 if: 

x1(0) = 1 , ẋ1(0) = 0 

x2(0) = 0 , ẋ2(0) = 1 

For example, find the normalized pair of solutions to ẍ + 2ẋ + 2x = 0. Then find eAt 

where A is the companion matrix for the operator D2 + 2D + 2I. Please comment. 

(c) Suppose that e3t 1 
and e2t 1 

satisfy the equation u̇ = Au. 
1 2 

1 0 
(i) Find solutions u1(t) and u2(t) such that u1(0) = and u2(0) = . 

0 1 

(ii) Find eAt . 

(iii) Find A. 
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