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18.03 Problem Set 9: Solutions 

Part I: 34. 4; 35. 10; 36. 6. 

(a) [18] A = −
0
2
.
.
5
25 0

1 
.5 

has characteristic polynomial pA(�) = �2 −�+2.5, and eigenvalues 

1±3i . An eigenvector for �1 = 1+3i satisfies (A−�1I)v1 = 0, that is, 
−
−
3
9
i/
/4

2 
−3i/2 

v1 = 0.2 2 

1 (1+3i)t/2 1 
One choice is v1 = . The normal mode is then e , which has real and 

3i/2 3i/2 

t/2 cos(3t/2) t/2 sin(3t/2)
imaginary parts u1 = e and u2 = e . −(3/2) sin(3t/2) (3/2) cos(3t/2) 

1 
The initial condition is u(0) = , which, conveniently, is satisfied by u1. Since u̇ = Au, we 

0 
1 0.5 

find u̇(0) = A = . So ẋ(0) = 0.5, and the weasel population is increasing at 
0 −2.25 

t = 0 while the number of voles is decreasing. y(t) = 0 occurs next when 3t/2 = �, or t = 2�/3. 

The graphs of x(t) = et/2 cos(3t/2) and y(t) = 
−(3/2)et/2 sin(3t/2) are “anti-damped” sinusoids, 
with increasing amplitude. The relevant trajec­
tory is the one crossing the positive x axis half 
way out. The values of u(t) are u 

� 
2
3 
� 
� 

= 
� � � � −

−�/3 −1 � −�/6 0 
e , u = e ,30 

− 
3/2 

u(0) = 
1 

, u 
�

� 
3 

� 
= e�/6 0 

,
0 −3/2 

�

2� 
� 

�/3 −1

u = e .3 0 

(b) [8] With A =
1 b 

, pA(�) = �2 − 2� + 1 = (� − 1)2, so we have a repeated eigenvalue 
0 1 

0 b 
�1 = 1. To find an eigenvector form A − �1I = . A nonzero eigenvector is given (for 

0 0 
1 

any b) by v = 
0 

. If b =� 0, the eigenvectors for value �1 are exactly the multiples of v 

(the matrix is defective), but for b = 0, A = I and any vector is an eigenvector (the matrix is 
c 

complete). When b = 0, the normal modes are et , for c a real constant. When b = 0, the �
0 

normal modes are etv for any vector v. When b = 0, we must solve (A − �1I)w = v1, that is, 
� � � � � �

�
0 b 1 0 

w = . The solution is w = , so the extra solution is u2 = e�1t(tv1 +w) = 
0 0 0 1/b 

tte . 
1/b 

35. (a) [4] trA = a − 1, det A = 3 − a, so trA = 2 − det A. det A = 0 when a = 3. trA = 0 
when a = 1. det A = (trA)2/4 when a2 + 2a − 11 = 0 or a = −1 ± 2

�
3, i.e. a � −4.4641 and 

a = 2.4641. 

(c) [4] Diagram showing: a < −1 − 2
�

3—stable node = nodal sink 
a = −1 − 2

�
3—defective stable node = defective nodal sink 

−1 − 2
�

3 < a < 1—counterclockwise stable spiral = spiral sink 



� � 

� � 

� � � � 

� � � � 

a = 1—counterclockwise center 
1 < a < −1 + 2

�
3–counterclockwise unstable spiral = spiral source 

a = 1 + 2
�

3—unstable defective node = defective nodal source 
1 + 2

�
3 < a < 3—unstable node = nodal source 

a = 3—unstable degenerate comb 
3 < a—saddle 

(b)-(c) [18] Here are pictures for a = 0, 1, 2, −1 + 
2
�

3, 2.75, 3, 4. (a = −2
�

3 omitted.) The picture for some 
a < −1 − 2

�
3 would show a nodal sink, and that for 

a = −1 − 2
�

3 would show a defective nodal sink. 

a 236. (a) [9] With A = 
−b 

, pA(�) = �2 −2a�+(a +b2) = (�−a)2 +b2, so the eigenvalues 
b a 

are a ± bi. An eigenvector for �1 = a + bi is given by v1 such that 
−
b
bi 

−
−
bi
b 

v1 = 0, and 

1 (a+bi)t 1 
we can take v1 = . The corresponding normal mode is e . Its real and −i −i 

cos(bt) sin(bt)
imaginary parts give linearly independent real solutions, eat and eat . 

sin(bt) cos(bt) 
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So a fundamental matrix is given by �(t) = eat cos(bt) sin(bt) 
. �(0) = 

1 0 
,

sin(bt) − cos(bt) 0 −1 

�(0)−1 =
1 0 

, so eAt = �(t)�(0)−1 = eat cos(bt) − sin(bt)
. 

0 −1 sin(bt) cos(bt) 

A(e(a+bi)t) = A(eat(cos(bt) + i sin(bt))) = eat cos(bt) − sin(bt)
= eA(a+bi)t . 

sin(bt) cos(bt) 

(b) [9] s2 + 2s +2 = (s + 1)2 + 1 so the roots of the characteristic polynomial are −1 ± i. Basic 
solutions are given by y1 = e−t cos(t) and y2 = e−t sin(t). (I write y instead of x because the 
problem wrote x for the normalized solutions.) y1(0) = 1, ẏ1(0) = −1, y2(0) = 0, ẏ2(0) = 1. 
So x1 = y1 + y2 and x2 = y2 form a normalized pair of solutions: x1(t) = e−t(cos t + sin t), 
x2(t) = e−t sin t. 

The companion matrix is A = 
0 1 

. Its characteristic polynomial is the same, �2+2�+2, −2 −2 
so its eigenvalues are the same, −1 ± i. An eigenvector for value −1 + i is given by v1 such 

that 
1 − i 1 

v1 = 0. We can take v1 = 
1 

. The corresponding normal −2 −1 − i −1 + i 
1 cos t 

mode is e(−1+i)t , which has real and imaginary parts u1 = e−t 
−1 + i − cos t − sin t 

and u2 = e−t sin t 
. �(t) = [u1 u2] has �(0) = 

1 0 
. �(0)−1 = 

1 0
, − sin t + cos t −1 1 1 1 

so eAt = �(t)�(0)−1 = e−t cos t + sin t sin t 
. The top entries coincide with x1 −2 sin t − sin t + cos t 

and x2 computed above. 

3t 1 2t 1 1 1 1 c1 + c2(c) [9] (i) u1 = c1e + c2e so = u1(0) = c1 + c2 = . 
1 2 0 1 2 c1 + 2c2 

2e3t 2t 1 
Thus c1 = 2 and c2 = −1: u1 =

2e3t −
−

2
e
e2t . Start again for u2: u2 = c1e

3t 
1

+ 

2t 1 0 1 1 c1 + c2 c2e 2 
so 

1
= u2(0) = c1 1

+ c2 2
= 

c1 + 2c2 
. Thus c1 = −1 and c2 = 1: 

3t 2t 
u2 = 

−e + e
2t . −e3t + 2e

(ii) We have just computed the columns of the exponential matrix: 
2e3t 2t 3t + e2t 

Ate =
2e3t −

−
2
e
e2t −

−
e
e
3t + 2e2t . 

1 1 a b 1 
(iii) The matrix A has eigenvalues 3 and 2, with eigenvectors and . The = 

1 2 c d 1 
1 a b 1 1 

3 and = 2 . The top entries give the equations a + b = 3 and 
1 c d 2 2 

a + 2b = 2, which imply a = 4, b = −1. The bottom entries give the equations c + d = 3, 

c + 2d = 4, which imply c = 2, d = 1. Thus A =
4 −1

. 
2 1 
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