18.03 Problem Set 3: Part II Solutions

Part I points: 8. 8, 9. 12, 11. 9, 12. 7.

8. (a) [3] The general logistic equation with small-population growth rate k¢ and equi-
librium population p is y = ko(1 — (y/p))y, The top menu choice is § = (1 — y)y — a,
which is the case kg = 1 and p = 1 together with a hunt rate of a. The only added
assumption is kg = 1.

(b) [3] 0 = (1 — y)y — a is the same as y?> — y + a = 0, which by the quadratic formula

has solutions y = % + ,/i — a. Thus when a > i there are no equilibria; when a = i

there is one, namely yy = %, and it is semi-stable; and when a < i there are two, the top
one stable and the bottom one unstable.

(c) [3] 187.5 oryx is = kilo-oryx, and a = - leads to critical points § & 1 or § and 3.

So the stable equilibrium population is 750 animals, and the critical population below
which it will crash is 250.

(d) [5]
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9. (a) [3] yo = 3/4, from (b) above: y = u+2,s01—y = 1—wand & = (;—u)(u—3)—2 =
—%u — 2. No explicit time dependence, so autonomous; and if u = 0 then % = 0.

(b) [3] The linearized equation is @ = —iu. The general solution to this is u = ce="/2.

(c) [3] Thus y is well approximated by % + ce 2. the population decays, or relaxes,

exponentially (with decay rate %) to the equilibrium value.

(d) [3] Both p(t) and ¢(t) must be constants.



11. (a) [4] p(s) = 38 + 35+ 2 = L(s* + 35+ 2). One way to find the roots is by
completing the square: s+ 3s+ % =(s+ %)2 — 1, which clearly has roots —% +1, or —%

and —g. This is what is shown on the applet.

(b) [4] = c1e™? + ce™™/2. So & = —Leie™? — 22 and wo = ¢1 + ¢, @ =
—%Cl—gCQ. Thus xg+22¢9 = —4cs s0 ¢y = —i(zo+2x'0). Then ¢; = xzg—cy = i(5$0+25€o).
(c) [3] z is purely exponential when either ¢; = 0—so 5z¢+2i¢ = 0—or when ¢y = 0—so
xg + 2I‘0 = 0.

(d)[4] Try to solve for ¢ in 0 = x(t) = c1e™ "% + ce™®/2. This leads to cy/c; = —e?. This
admits a solution for some t exactly when ¢; and ¢, are of opposite sign. To get positive
t, you need cp/c; < —1: so either —cy > ¢; > 0 or —c3 < ¢4 < 0. In terms of xg, @, this
says either xo + 22 > Sxg + 229 > 0, or xg + 229 < dxy + 229 < 0, i.e. either xy < 0 and
Ty > g(—xo), or zo > 0 and 7y < —gato. This is borne out by the applet.

12. (a) [6] p(s) = 2(s* +2bs + 2) = L((s + b)? + (5 — b?)) has a double root when
Z =0 orb= g (We don’t allow b < 0.) Then the root is —b, so the general solution
is (a+ ct)e .

(b) [6] When b = 1, p(s) = 3(s* + 35+ 2) = 5((s + 1)* + 17) has roots —5 & @z’ ~
—0.25 4 (1.0897)i. The general solution is thus e~*/4 (a Ccos (@t) + bsin <@t>> =
Ae~t* cos <@t — gb). (Either form suffices.)

(c) [5] My measurements are: 0.00,2.93,5.76,8.69,11.52. The successive differences are
2.93,2.83,2.93, 2.83—pretty close to constant. This is half the period of the sinusoid
involved in the solution, which has circular frequency w = @ and hence half-period

I = % ~ 2.8829231. Not bad agreement! The oscillations are constant over time

(though the amplitude decreases). Successive differences of zeros of other solutions should
be the same.
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