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18.03 Problem Set 3: Part II Solutions 

Part I points: 8. 8, 9. 12, 11. 9, 12. 7. 

8. (a) [3] The general logistic equation with small-population growth rate k0 and equi­
librium population p is y = k0(1 − (y/p))y, The top menu choice is ẏ = (1 − y)y − a, 
which is the case k0 = 1 and p = 1 together with a hunt rate of a. The only added 
assumption is k0 = 1. 

(b) [3] 0 = (1 − y)y − a is the same as y2 
− y + a = 0, which by the quadratic formula 

has solutions y = 
2

1 
± 

4

1 
− a. Thus when a > 

4

1 there are no equilibria; when a = 
4

1 

there is one, namely y0 = 1

2 , and it is semi-stable; and when a < 1

4 there are two, the top 
one stable and the bottom one unstable. 

3 3 1 
± 1 1 3(c) [3] 187.5 oryx is 

16 kilo-oryx, and a = 
16 leads to critical points 

2 4 or 
4 and 

4 . 
So the stable equilibrium population is 750 animals, and the critical population below 
which it will crash is 250. 

(d) [5] 

(e) [2] y2 
− y − a = 0. 

9. (a) [3] y0 = 3/4, from (b) above: y = u+ 3 , so 1−y = 1 
−u and u̇ = (1 

−u)(u−3 )− 3 = 
4 4 4 4 16 

−
1 u − u2 . No explicit time dependence, so autonomous; and if u = 0 then u̇ = 0. 
2 

(b) [3] The linearized equation is u̇ = − 1

2 u. The general solution to this is u = ce−t/2 . 

(c) [3] Thus y is well approximated by 
4

3 + ce−t/2: the population decays, or relaxes, 
exponentially (with decay rate 

2

1 ) to the equilibrium value. 

(d) [3] Both p(t) and q(t) must be constants. 
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11. (a) [4] p(s) = 1

2 s
2 + 3

2 s + 5

8 = 1

2 (s
2 + 3s + 5

4 ). One way to find the roots is by 
completing the square: s2 + 3s + 5

4 = (s + 3
2 )

2 
− 1, which clearly has roots − 3

2 ± 1, or −1

2 
and −5

2 . This is what is shown on the applet. 

(b) [4] x = c1e
−t/2 + c2e

−5t/2 . So ẋ = −1

2 c1e
−t/2 

− 5

2 c2e
−5t/2, and x0 = c1 + c2, ẋ0 = 

−
1

2 c1 − 5
2 c2. Thus x0 +2 ̇x0 = −4c2 so c2 = −1

4 (x0 +2 ̇x0). Then c1 = x0 −c2 = 1

4 (5x0 +2 ̇x0). 

(c) [3] x is purely exponential when either c1 = 0—so 5x0 +2ẋ0 = 0—or when c2 = 0—so 
x0 + 2ẋ0 = 0. 

(d)[4] Try to solve for t in 0 = x(t) = c1e
−t/2 + c2e

−5t/2 . This leads to c2/c1 = −e2t . This 
admits a solution for some t exactly when c1 and c2 are of opposite sign. To get positive 
t, you need c2/c1 < −1: so either −c2 > c1 > 0 or −c2 < c1 < 0. In terms of x0, ẋ0, this 
says either x0 + 2ẋ0 > 5x0 + 2ẋ0 > 0, or x0 + 2ẋ0 < 5x0 + 2ẋ0 < 0, i.e. either x0 < 0 and 
ẋ0 > 5

2 (−x0), or x0 > 0 and ẋ0 < −
2

5 x0. This is borne out by the applet. 

12. (a) [6] p(s) = 1

2 (s
2 + 2bs + 5

4 ) = 1

2 ((s + b)2 + (5

4 − b2)) has a double root when 
5 = b2 or b = 5 . (We don’t allow b < 0.) Then the root is −b, so the general solution 
4 2 
is (a + ct)e−bt . 

(b) [6] When b = 1 , p(s) = 1 (s2 + 1 s + 5 ) = 1 ((s + 1 )2 + 19 ) has roots − 1 
± 19 i �

4 2 2 4 2 4 
� 16 

� 4 
�� � � 4 

−0.25 ± (1.0897)i. The general solution is thus e−t/4 a cos 
4

19 t + b sin 
4

19 t = 

Ae−t/4 cos 
4

19 t − � . (Either form suffices.) 

(c) [5] My measurements are: 0.00, 2.93, 5.76, 8.69, 11.52. The successive differences are 
2.93, 2.83, 2.93, 2.83—pretty close to constant. This is half the period of the sinusoid 
involved in the solution, which has circular frequency � = 

4

19 and hence half-period 
� 4� = � � 2.8829231. Not bad agreement! The oscillations are constant over time
� 19 
(though the amplitude decreases). Successive differences of zeros of other solutions should 
be the same. 
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