Finding Area Using Line Integrals

Use a line integral (and Green's Theorem) to find the area of the unit circle.

Answer: Recall that Green's Theorem tells us $\oint_C M dx + N dy = \iint_R N_x - M_y dA$. To find the area of the unit circle we let M = 0 and N = x to get $\iint_R 1 dA = \oint_C x dy$. We parametrize the circle by $x = \cos \theta$, $y = \sin \theta$, $0 < \theta \le 2\pi$, so $x dy = \cos^2 \theta d\theta$. Then

Area =
$$\iint_{R} 1 \, dA$$
=
$$\oint_{C} x \, dy$$
=
$$\int_{0}^{2\pi} \cos^{2}\theta \, d\theta$$
=
$$\int_{0}^{2\pi} \frac{1 + \cos 2\theta}{2} \, d\theta$$
=
$$\frac{1}{2} \left(\theta + \frac{1}{2} \sin 2\theta \right) \Big|_{0}^{2\pi}$$
=
$$\pi.$$

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.