
18.02 Problem Set 9


At MIT problem sets are referred to as ’psets’. You will see this term used occasionally 
within the problems sets. 

The 18.02 psets are split into two parts ’part I’ and ’part II’. The part I are all taken 
from the supplementary problems. You will find a link to the supplementary problems 
and solutions on this website. The intention is that these help the student develop 
some fluency with concepts and techniques. Students have access to the solutions 
while they do the problems, so they can check their work or get a little help as they 
do the problems. After you finish the problems go back and redo the ones for which 
you needed help from the solutions. 

The part II problems are more involved. At MIT the students do not have access 
to the solutions while they work on the problems. They are encouraged to work 
together, but they have to write their solutions independently. 

Part I (10 points) 

At MIT the underlined problems must be done and turned in for grading. 
The ‘Others’ are some suggested choices for more practice. 

A listing like ’§1B : 2, 5b, 10’ means do the indicated problems from supplementary 
problems section 1B. 

1 Green’s Theorem 
§4D: 1c, 2, 3, 4; Others: 1ab, 5 

2 Green’s Thm. in ‘normal form’; flows, divergence & curl.

§4E: 1ac, 2, 4, 5; Others: 1b, 3;

§4F: 4; Others: 2, 3




� 

C 

Part II (13 points) 

Problem 1 (4: 2,2)


F(x, y) = (y 3 − 6y) i + (6x − x 3) j.


a) Using Green’s Theorem, find the simple closed curve C for which the integral


F dr (with positive orientation) will have the largest positive value. · 

b) Compute this largest positive value. 

Problem 2 (6: 2,2,2) 

In the reading V4.2 (pp.1-3) it is shown that in the context of 2D fluid flows, Green’s 
theorem in normal form combined with the principle of conservation of mass imply 
that div(F), the divergence of the flow field F(x, y), represents the (signed) rate of 
mass per unit time per unit area which originates at the point (x, y), or the source or 
sink rate for short. This extends to non-steady flows F(x, y, t), and leads directly to 
the Equation of Continuity for fluid flows, which is the statement of conservation of 
mass and hence one of the basic physical principles of fluid dynamics. We’ll continue 
to use ρ for the density (instead of δ used in the Notes). 
The divergence of a vector field F(x, y, t) in this context is defined with respect to the 
space variables only, that is, if F(x, y, t) = �M(x, y, t), N(x, y, t)� is a smooth vector 
field, then div(F) = ∂M + ∂N .

∂x ∂y 

Then for the case of a flow field F(x, y, t) = ρ(x, y, t) v(x, y, t) with density ρ(x, y, t) 
and velocity v(x, y, t), the equation of continuity reads 

∂ρ 
+ div(F) = 0. 

∂t 

Note that for steady flows, which by definition means ρ = ρ(x, y) and v = v(x, y), the 
equation of continuity holds if and only if div(F) = 0. Thus conservation of mass for 
steady flows is equivalent to the absence of any sources or sinks, which makes sense. 
a) For non-steady flows, assuming that the physical interpretation of div(F) is the 
same as in the case of steady flows (at each time t), explain why the equation of 
continuity is in fact the statement of conservation of mass. 
Hint : take an arbitrary bounded region R and integrate both terms of the continuity 
equation over R. Then use Green’s theorem in normal form. 
b) Let g(x, y, t) be a smooth scalar function, and again define the gradient of g(x, y, t) 
in this case to be with respect to just the space variables: �g = �gx, gy�. Then if 
and G(x, y, t) = �M(x, y, t), N(x, y, t)� is a smooth vector field, use the product rule 
to show that 

div (g G) = g div(G) + G · �g 

Df 
c) Refer to the definition of the convective derivative given in p-set 5 #2, and 

Dt 
Dρ 

the definition of incompressibility for flows = 0, as given in p-set 5 #3. 
Dt 



� 

Combining: the equation of continuity; the result of part(b) above; and the result of 
p-set 5 #2, show that the flow F(x, y, t) = ρ(x, y, t) v(x, y, t) is incompressible if and 
only if 

div(v) = 0. 

This is thus an equivalent condition for the incompressibility of a flow. 

Problem 3 (3) 

Sketch each of the following non-steady flows.

Verify that it satisfies the equation of continuity.

(Suggestion: Use the expanded form of the equation of continuity found in problem

2(c) above.)

Then test it to determine whether it is incompressible, and if so, whether it is also

stratified (see p-set 5 #3(b)):


(i) v(x, y, t) = t �−y, x�, ρ(x, y, t) = x2 + y2 

1(ii) v(x, y, t) = 
1+t �x, −y�, ρ(x, y, t) = xy 

(iii) v(x, y, t) = t �x, y�, ρ(x, y, t) = e−t2 
. 
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