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Changing Variables in Multiple Integrals 

3. Examples and comments; putting in limits. 

If we write the change of variable formula as 

∣ ∂(x, y) ∣ 
(18) f(x, y) dx dy = g(u, v) du dv , 

R R ∂(u, v) 
where 

∂(x, y) ∣ xu xv 
∣ 

(19) = , g(u, v) = f(x(u, v), y(u, v)),
∂(u, v) yu yv 

it looks as if the essential equations we need are the inverse equations: 

(20) x = x(u, v), y = y(u, v) 

rather than the direct equations we are usually given: 

(21) u = u(x, y), v = v(x, y) . 

If it is awkward to get (20) by solving (21) simultaneously for x and y in terms of u and v, 
sometimes one can avoid having to do this by using the following relation (whose proof is 
an application of the chain rule, and left for the Exercises): 

∂(x, y) ∂(u, v)
(22) = 1 

∂(u, v) ∂(x, y) 

The right-hand Jacobian is easy to calculate if you know u(x, y) and v(x, y); then the left­
hand one — the one needed in (19) — will be its reciprocal. Unfortunately, it will be in 
terms of x and y instead of u and v, so (20) still ought to be needed, but sometimes one 
gets lucky. The next example illustrates. 

y
Example 3. Evaluate dx dy, where R is the region pictured, having 

R x 
as boundaries the curves x2 − y2 = 1, x2 − y2 = 4, y = 0, y = x/2 . 

Solution. Since the boundaries of the region are contour curves of x2 − y2 and y/x , 
and the integrand is y/x, this suggests making the change of variable 

(23) u = x 2 − y 2 , v = 
y 

. 
x 

We will try to get through without solving these backwards for x, y in terms of u, v. Since 
changing the integrand to the u, v variables will give no trouble, the question is whether we 
can get the Jacobian in terms of u and v easily. It all works out, using (22): 

∂(u, v) ∣ 2x −2y ∣ 2
∂(x, y) 1 

∂(x, y)
= −y/x2 1/x 

= 2− 2y 2/x2 = 2− 2v ; so 
∂(u, v) 

= 
2(1− v2) 

, 

1 

y=x/x -y = 

x -y =2 2 

2 2 21 

4R 
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2 CHANGING VARIABLES IN MULTIPLE INTEGRALS 

according to (22). We use now (18), put in the limits, and evaluate; note that the answer is 
positive, as it should be, since the integrand is positive. 

y v 
x 

dx dy = 
2(1− v2) 

du dv 
R R 

∫ 

1/2 ∫ 4 v 
= du dv 

2(1− v2)0 1 

3 
]1/2 

3 3 
= −

4 
ln(1− v 2) = −

4 
ln 

4 
. 

0 

Putting in the limits 

In the examples worked out so far, we had no trouble finding the limits of integration, 
since the region R was bounded by contour curves of u and v, which meant that the limits 
were constants. 

If the region is not bounded by contour curves, maybe you should use a different change of 
variables, but if this isn’t possible, you’ll have to figure out the uv-equations of the boundary 
curves. The two examples below illustrate. 

∫ 

1 ∫ x 

Example 4. Let u = x + y, v = x − y; change dy dx to an iterated integral 
0 0 

du dv. 

∂(x, y)
Solution. Using (19) and (22), we calculate = −1/2, so the Jacobian factor 

∂(u.v) 
in the area element will be 1/2. 

1 
To put in the new limits, we sketch the region of integration, as shown at the 

right. The diagonal boundary is the contour curve v = 0; the horizontal and vertical 
boundaries are not contour curves — what are their uv-equations? There are two 
ways to answer this; the first is more widely applicable, but requires a separate 
calculation for each boundary curve. 

Method 1 Eliminate x and y from the three simultaneous equations u = u(x, y), v = v(x, y), 
and the xy-equation of the boundary curve. For the x-axis and x = 1, this gives 

  

 
u = x + y 

 
u = x + y 

{ 

  u = 1 + y 

 

v = x − y ⇒ u = v; 
 

v = x − y ⇒ 
v = 

⇒ u + v = 2. 
 

y = 0 
 

x = 1 
1− y 

Method 2 Solve for x and y in terms of u, v; then substitute x = x(u, v), y = y(u, v) into 
the xy-equation of the curve. 

Using this method, we get x = 
2

1 
2

1(u+v), y = (u−v); substituting into the xy-equations: 

1 1 
y = 0 ⇒ 

2
(u − v) = 0 ⇒ u = v; x = 1 ⇒ 

2
(u + v) = 1 ⇒ u + v = 2. 

∫∫ 

To supply the limits for the integration order du dv, we 

1 
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CHANGING VARIABLES IN MULTIPLE INTEGRALS 

1. first hold v fixed, let u increase; this gives us the dashed lines shown; 
2. integrate with respect to u from the u-value where a dashed line enters 1 

R (namely, u = v), to the u-value where it leaves (namely, u = 2− v). 
3. integrate with respect to v from the lowest v-values for which the 

dashed lines intersect the region R (namely, v = 0), to the highest such v-
value (namely, v = 1). 

∫ 

1 ∫ 2−v 1 
Therefore the integral is du dv . 

20 v 

3 

v= 0 

v=v0 
u=2-v 

v=1 

1 u=v 

(As a check, evaluate it, and confirm that its value is the area of R. Then try setting up 
the iterated integral in the order dv du; you’ll have to break it into two parts.) 

Example 5. Using the change of coordinates u = x2 2 , v = y/x of Example 
∫ ∫ 

− y
dxdy 

3, supply limits and integrand for , where R is the infinite region in the first 
x2 

R 
quadrant under y = 1/x and to the right of x2 − y2 = 1. 

Solution. We have to change the integrand, supply the Jacobian factor, and put in the 
right limits. 

To change the integrand, we want to express x2 in terms of u and v; this suggests 
eliminating y from the u, v equations; we get 

u
2 2 2 2 2 2 u = x , y = vx u = x v x x = .− y ⇒ − ⇒ 

1− v2 

1 
From Example 3, we know that the Jacobian factor is ; since in the region R we 

2(1− v2)
have by inspection 0 ≤ v < 1, the Jacobian factor is always positive and we don’t need the 
absolute value sign. So by (18) our integral becomes 

dx dxy 1− v2 du dv 
= du dv = 

x2 2u(1− v2) 2uR R R 

Finally, we have to put in the limits. The x-axis and the left-hand boundary curve 
x2 − y2 = 1 are respectively the contour curves v = 0 and u = 1; our problem is the upper 
boundary curve xy = 1. To change this to u − v coordinates, we follow Method 1: 

 

2 2 
 

u = x
{ 

 

− y
u = x2 − 1/x2 1 

 

y = vx ⇒ 
v = 1/x2 ⇒ u = 

v 
− v . 

 

xy = 1 

The form of this upper limit suggests that we should integrate first with 
respect to u. Therefore we hold v fixed, and let u increase; this gives the 
dashed ray shown in the picture; we integrate from where it enters R at 

1 

xy= 

x -y = 

1 

12 2 

u= /v-v1 

u=1 
P

v=a

O 
u = 1 to where it leaves, at u = 

v 
− v. 

The rays we use are those intersecting R: they start from the lowest ray, corresponding 
to v = 0, and go to the ray v = a, where a is the slope of OP. Thus our integral is 

∫ a ∫ 1/v−v du dv 
. 

2u0 1 
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To complete the work, we should determine a explicitly. This can be done by solving 
xy = 1 and x2 − y2 = 1 simultaneously to find the coordinates of P . A more elegant 
approach is to add y = ax (representing the line OP) to the list of equations, and solve all 
three simultaneously for the slope a. We substitute y = ax into the other two equations, 
and get 

{ 

2ax = 1 −1 +
√
5 

x2(1− a2) = 1 
⇒ a = 1− a 2 ⇒ a =

2 
, 

by the quadratic formula. 



MIT OpenCourseWare
http://ocw.mit.edu 

18.02SC Multivariable Calculus 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

