Moment of inertia

1. Let R be the triangle with vertices (0,0), (1,0), (1,/3) and density § = 1. Find the
polar moment of inertia.

Answer: The region R is a 30, 60 , 90 triangle.
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The polar moment of inertia is the moment of inertia around the origin (that is, the z-axis).
The figure shows the triangle and a small square piece within R. If the piece has area dA
then its polar moment of inertia is dI = 726 dA. Summing the contributions of all such
pieces and using § = 1, dA = r dr df, we get the total moment of inertia is
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Next we find the limits of integration in polar coordinates. The line
r=1<«< rcosd =1 & r =sech.

So, using radial stripes, the limits are: (inner) r from 0 to sec; (outer) 6 from 0 to 7/3.

Thus,
n/3 psec
1 :/ / 3 dr db.
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Outer integral: Use sec?§ = sec? fsec? = (1 + tan?6) d(tanf) = the outer integral is
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Inner integral:

The polar moment of inertia is -
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