
Moment of inertia


1. Let R be the triangle with vertices (0, 0), (1, 0), (1, 
√
3) and density δ = 1. Find the 

polar moment of inertia. 

Answer:	 The region R is a 30, 60 , 90 triangle. 
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The polar moment of inertia is the moment of inertia around the origin (that is, the z-axis). 
The figure shows the triangle and a small square piece within R. If the piece has area dA 
then its polar moment of inertia is dI = r2δ dA. Summing the contributions of all such 
pieces and using δ = 1, dA = r dr dθ, we get the total moment of inertia is �� �� �� 

I = r 2δ dA = r 2 r dr dθ = r 3 dr dθ. 
R R	 R 

Next we find the limits of integration in polar coordinates. The line 

x = 1 r cos θ = 1 r = sec θ. ⇔ ⇔ 

So, using radial stripes, the limits are: (inner) r from 0 to sec θ; (outer) θ from 0 to π/3. 

Thus, � π/3 � sec θ 

I = r 3 dr dθ. 
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Inner integral: . 
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Outer integral: Use sec4 θ = sec2 θ sec2 θ = (1 + tan2 θ) d(tan θ) the outer integral is ⇒ 
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The polar moment of inertia is . 
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