Problems: Mass and Average Value

Let R be the quarter of the unit circle in the first quadrant with density d(x,y) = y.
1. Find the mass of R.

Because R is a circular sector, it makes sense to use polar coordinates. The limits of
integration are then 0 <7 <1 and 0 < # < /2. In addition we have § = rsinf. To find
the mass of the region, we integrate the product of density and area.
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The region has mass 1/3.

This seems like a reasonable conclusion — the region has area a little greater than 1/2 and
average density around 1/2.

2. Find the center of mass.

The center of mass (Zem, Yem) is described by
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xcm—M//RxédA and ycm—M//RyédA.
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From (1), M
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The center of mass is at <8’ 4> ~ (.4,.6).

This point is within R and agrees with our intuition that x.,, < 1/2 and yem > Tem.

3. Find the average distance from a point in R to the z axis.

1
To find the average of a function f(z,y) over an area, we compute N // f(z,y)dA.
rea R

Here f(z,y) =v.
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This should look familiar — we computed in (1) that / / 2 sin 0 dr df = 3 The average
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