Matrix multiplication

1. Let
$$A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 5 & 6 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 4 \\ 1 & 5 \\ 1 & 6 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$, $E = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

For each of the following say whether it makes sense to compute it. If it makes sense then do the computation.

(i)
$$AA$$
 (ii) AB (iii) AC (iv) AE (v) DA (vi) CE (vii) $A+B$ (viii) $A+D$.

- **2**. Let $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. Find a column vector B such that $AB = \begin{pmatrix} b \\ e \\ h \end{pmatrix}$ (the middle column of A).
- **3**. Write the following system in matrix form

$$2x + 3y + 5z = 2$$

 $2y + z = 1$
 $x - 2y + = 3$

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.