Solutions to linear systems

1. Consider the system

r + y + 22z =0
2t + y + cz = 0
3r + y + 6z = 0
a) Take ¢ = 1 and find all the solutions.
b) Take ¢ = 4 and find all the solutions.
Answer: a) In matrix form we have
11 2 T 0
2 11 y |=10
316 z 0

Call the coefficient matrix A. First we check if det(A) = 0.
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So, the inverse exists and can be used to find the (unique) solution. We don’t actually need
to compute the inverse because we know

T 0 0
y |=A1t(o]=1]o0
z 0 0

b) The coefficient matrix is now
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First we check if det(A) = 0.

11
2 1 = 1(2) — 1(0) + 2(~1) = 0.
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Since det(A) = 0 there are infinitely many solutions to the homogeneous system. We find
them by taking a cross product of two rows of A.

(1,1,2) x (2,1,4) = =i(2) —j(0) + k(—1) = (2,0, —1).
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Therefore, all solutions are of the form

(z,y,2) = (2a,0,—a).
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