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18.02 Problem Set 2, Part II Solutions 

1. a) 

(b) See the diagram. Because the lines are parallel, we can cut through them 
with a single plane which is orthogonal to each line. The normal vectors 
n1, n2, n3 lie in this plane. 

(c) One way to do this part is to write 

(n1 × n2) n3 = (cn2 × n3) n3 = c((n2 × n3) n3) = c 0 = 0.· · · · 

Here we used that n1 × n2 is parallel to n2 × n3 so we can write the latter as 
a scalar c times the former. Since the triple product of the normals is zero, 
we know that they are coplanar. 

Here is another way:

Each plane Pi can be written as the solutions to an equation x ni = ai for
· 
scalar ai. 

We are told that the three planes do not have a point in common. That 
means that there is no vector v solving ⎞
⎛
 ⎞
⎛


n1 a1 ⎠⎝a2 

n3 a3 

So the determinant of the matrix at left must be zero. But then 

⎝ n2 ⎠ v = .


0 =

n1 

n2 

n3 

= n1 · n2 × n3. 

So the three normals are coplanar. 

2. (a) In 1 unit of P1 there are 1/6 of a unit of M1, 2/6 of a unit of M2, and 
3/6 of a unit of M3. So to produce p1 units of P1, we need 1

6 p1 units of M1, 
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1 1 p1 units of M2, and p1 units of M3. Thus (using similar reasoning for P23 2 
and P3) the linear system is Ap = m with ⎡ ⎤ 

1 1 3 
6 9 16 

A = ⎣ 1 1 5 ⎦ .
3 3 16 
1 5 1 
2 9 2 

(b) Using the method of cofactors we compute |A| = 1 = 0, and then � A−1 .
864 

We get ⎡ ⎤⎡ ⎤ 
−6 42 −24 m1 

p = A−1(m) = ⎣ −9 −9 9 ⎦⎣ m2 ⎦ . 
16 −32 16 m3 

If m = �137, 279, 448� T , then p = A−1(m) = �144, 288, 432� T . So: 144 units 
of P1, 288 of P2, and 432 of P3 produced. 

(c) ⎡ ⎤ 
1 1 1 (1 1 
6 9 2 6 + 

9 ) 
A = ⎣ 1 1 1 ⎦ .

3 3 3 
1 5 1 (1 5 
2 9 2 2 + 

9 ) 

Here we replaced the third column with the average of the first two. This 
makes a legitimate set of ratios for composition of P3 because the entries add 
up to 1. It also makes the determinant of A equal to zero. Why is this? 
Well, take the transpose of A and we have a matrix where the third row is 
the average of the first two rows. So its rows are coplanar. That means it 
has determinant zero. Taking the transpose preserves the determinant, so 
the original matrix, shown above, has determinant zero. This means that 
depending on quantities of raw materials specified, either there will be many 
solutions (non-uniqueness) or no solutions (inconsistent). 

If you didn’t think of this method, you could also try putting in variable 
entries in the third column ⎡ ⎤ 

1 1 a
6 9


A = ⎣ 1 1 a ⎦ .

3 3

1 5
 c
2 9 

and then find various choices for a, b, c which satisfy the equations 

|A| = 0 

a + b + c = 1. 
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3. a) Key to this problem: use the cross-product (repeatedly!). There 
are two planes involved, the plane P with normal n and the x-y plane with 
normal k. Taking the cross product n × k gives a vector which points along 
the intersection of the two planes. By inspection of the sketch, it is clear 
that any vector w which points in the steepest direction of P lies both in P
and is perpendicular to the line of intersection of P and the x-y plane. Since 
w lies P , it is in perpendicular to n; and since it is perpendicular to the line 
of intersection of P and the x-y plane, it is perpendicular to n × k. Thus 

w = (n × k) × n 

is a vector in P which points in the steepest direction of P . 
b) For the plane containing u and v we can take n = u × v as a normal 
vector. Substituting this in the answer to part(a), we get 

w = ((u × v) × k) × (u × v). 

Notes: (i) Obviously taking the products in different orders just introduces 
a scalar factor. (ii) The formula for w does not give the zero vector (which 
would be bad!) because the plane P is assumed to not be the x-y plane. So 
we are ensured that n and k form a positive angle. 
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