Vector Components

1. a) Let $\mathbf{A} = \langle 1, 3 \rangle$ and $\mathbf{B} = \langle 3, 4 \rangle$.

(i) Find the component of **A** in the direction of **B**.

(ii) Find the component of ${\bf B}$ in the direction of ${\bf A}$.

b) Let $\mathbf{A} = \langle 3, 5, 7 \rangle$ and $\mathbf{B} = \langle 3, 4, 0 \rangle$. Find the component \mathbf{A} in the direction of \mathbf{B} .

<u>Answer:</u> a) (i) $|\mathbf{B}| = 5 \Rightarrow$ the component is $\mathbf{A} \cdot \frac{\mathbf{B}}{|\mathbf{B}|} = \langle 1, 3 \rangle \cdot \frac{\langle 3, 4 \rangle}{5} = \frac{15}{5} = 3$.

(ii) $|\mathbf{A}| = \sqrt{10} \Rightarrow \mathbf{B} \cdot \frac{\mathbf{A}}{|\mathbf{A}|} = \langle 3, 4 \rangle \cdot \frac{\langle 1, 3 \rangle}{\sqrt{10}} = \frac{15}{\sqrt{10}}.$

b) In three dimensions the formula is the same. The component is $\mathbf{A} \cdot \frac{\mathbf{B}}{|\mathbf{B}|} = \langle 3, 5, 7 \rangle \cdot \frac{\langle 3, 4, 0 \rangle}{5} = \frac{29}{5}$.

2. Let $\mathbf{A} = \langle a, 2 \rangle$ and $\mathbf{B} = \langle 1, 3 \rangle$. For what values of a is the component of \mathbf{A} along \mathbf{B} equal to 0? For what a is it negative?

Answer: The component is $\langle a, 2 \rangle \cdot \frac{\langle 1, 3 \rangle}{\sqrt{10}} = \frac{a+6}{\sqrt{10}}$.

This is 0 if a = -6.

This is negative if a < -6.

3. For which angle θ is the component of **A** in the direction of **B** equal to 0.

Answer: $\theta = \pi/2$.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.