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18.02 LECTURE NOTES ON PROBABILITY 

Continuous Probability 

Discrete probability describes games of chance with a list of outcomes, such as whether 
a coin lands on heads or tails, or a die lands on one of the values 1 through 6. In contrast, 
continuous probability concerns quantities that can take on all possible values in a continuum. 
In the discrete case, the probability of an outcome or an average value is expressed as a 
sum, whereas in the continuous case these values are described using integrals. 

The basic equation of probability theory is 

PART 
PROBABILITY = 

WHOLE 

Note that the probability is a number between 0 and 1. 

Example 1. We say that x is uniformly distributed on the interval 0 ≤ x ≤ 10 if any 
value of x is as likely as any other. In this case, the probability that 1 < x < 7 is 

PART 7 − 1 6 
= = = 60% 

WHOLE 10 10 

If 0 ≤ a < b ≤ 10, then probability that a < x < b, is given by the formula � b1 
P (a < x < b) = dx = 

b− a 
10 10a 

The probability density of x is 1/10 on 0 ≤ x ≤ 10 and zero outside this interval. More 
generally, x can be distributed by a nonnegative function g(x) so that � b 

P (a < x < b) = g(x)dx 
a 

Because the total probability is 1, we need 

∞ 

g(x)dx = 1 
−∞ 

In our example, g(x) = 1/10 on 0 ≤ x ≤ 10 and g(x) = 0 outside this interval. With 
continuous variables like x it does not matter whether we include the ends x = a and x = b 
or not. We interpret the events x = a and x = b as happening with zero probability. Thus, 
P (a < x < b) = P (a ≤ x ≤ b). 

Example 2. Consider a point (x, y) distributed according to the weighting or density 
δ(x, y) = x2 + y2 on the unit disk D, x2 + y2 < 1. The probability that (x, y) is in a portion 
R of D is � � 

P ((x, y) in R) = 
PART 

= 
mass(R)

= 
1 

δdA 
WHOLE mass(D) M R 

where M = δdA is the total mass of D. We also write 
D 

δ δ(x, y)
P ((x, y) in R) = dA = g(x, y)dA; where g(x, y) = ,

MR M R 
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In other words, the probability density g(x, y) = δ(x, y)/M is normalized so that the total 
integral is 1. � � 

g(x, y)dxdy = 1. 
D 

Using polar coordinates, � � � 2π � 1 

M = δdA = r 2rdrdθ = 
π 
2D 0 0 

If R is the ring a < r < b, then � b � 2π � b� 2π � b 1 1 
P (a < r < b) = r 2rdrdθ = r 3dr dθ = 4r 3dr 

0 a M a M 0 a 

Thus, by integrating in the θ variable, we obtain the probability density in the remaining 
variable r. The probability density of r in this example is g(r) = 4r3 for 0 ≤ r ≤ 1 and 
g(r) = 0 outside this interval. As usual, the total probability � 1 

P (0 ≤ r ≤ 1) = 4r 3dr = 1 
0 

∞ 
2

Example 3. The normal distribution. The value of the constant M = e−x dx 
−∞

is very important in probability theory. It gives us the normalizing factor to use when 
defining 

1 2 

G(x) = e−x 

M 
as a probability density, that is, M is the constant we need in order that 

∞ 

G(x)dx = 1 
−∞ 

The function G(x) is the well­known bell curve or normal distribution. 
∞ 

2
To compute M = e−x dx, rewrite M 2 in a clever way, as in lecture: 

−∞ �� � �� � � �� �∞ 
2 

∞ ∞ 
2 2 

M 2 = 
∞ 

e−x 2 

dx e−y dy = e−x dx e−y dy � −∞ −∞ � � −∞ −∞
∞ ∞ 

2 2 
∞ ∞ 

2 2 

= e−x e−y dxdy = e−x −y dxdy 
−∞ �−∞ � 2π 1 

−∞ −∞� 2π ∞ 
2 

= e−r rdrdθ = dθ = π
20 0 0 

Therefore, M 2 = π and M = 
√

π. In all, we have 

1 2 
∞ 1 2 

G(x) = √
π

e−x ; √
π

e−x dx = 1 
−∞ 

The importance of this function to probability was discovered by Abraham de Moivre around 
1700. We have used the name G(x) in honor of Karl Friedrich Gauss, who laid the foun­
dations of probability theory (along with the method of least squares) in the process of 
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finding better ways to make use of measurements in astronomy. Any function of the form 
e−ax +bx+c is called a Gaussian. 

In order for you to recognize the normal distribution in the future, you will need to 
recognize all its scalings, related to the parameters a, b and c above. The scaling of the 
Gaussian will be discussed in the optional section at the end of these Notes. That section 
is not necessary for 18.02, but it will give you a brief look at some tools and terminology in 
the theory of probability. 

Conditional probability 

To choose 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 independently “at random” means 

P ((x, y) in R) = area(R); R in unit square 

Thus P (x ≥ 1/2) = 1/2. But the probability changes when we add information: 

P (x ≥ 1/2 | xy = 1/1000) =? 

This notation means the probability that x ≥ 1/2 given that we already know xy = 1/1000. 
It is known as a conditional probability. 

Computing conditional probabilities of this kind is very closely related to computing 
integrals using a change of variable. The conditional probability density turns out to be the 
Jacobian factor, renormalized so that the total probability is one. 

Recall that if u = x and v = xy, then on Thursday we showed that � 1 � 1 � 1 � 1 du 
dxdy = dv 

0 0 0 v u 

Note that the interesting parts of this calculation are that the Jacobian J = 1/u and that 
the range of u with v fixed is v ≤ u ≤ 1. Consider any fixed value xy = v = v0, and consider 
the inner integral � 1 1 

du 
uv0 

The idea is that if xy = v0, then v0 ≤ u ≤ 1 is the full range for u = x and that Jacobian 
factor 1/u is the probability density on that interval. We need to need to normalize by this 
total mass. � 1 1 

M = du = − ln(v0) 
uv0 

For xy = v0 fixed, this means that x > 1 and x < v0 never happen. In between, v0 ≤ a < 
b ≤ 1, � b du 

a uP (a ≤ x ≤ b | xy = v0) = = 
part 

M whole 

Therefore, with a = 1/2, b = 1, v0 = 1/210 = 1/1024 (close enough to 1/1000) � 1 du − ln(1/2) 1 
P (x ≥ 1/2 | xy = 1/210) = � 1/2 u

du = 
− ln(1/210)

= 
ln 2 

= 
10 ln 2 10 

1/210 u 

Why this formula works. There is a difficulty with fixing xy = v0. The condition 
confines us to a single curve, which has zero area and hence zero probability. So when we 
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divide the part by the whole, we are dividing zero by zero. To repair this difficulty, consider 
a small interval v0 ≤ v ≤ v0 + Δv, carry out the computation of the ratio, and take the limit 
as Δv tends to zero. This is the correct way of thinking about what it means to know that 
xy = .001 because any computation that reports the value .001 does it with a roundoff error 
Δv. For practical purposes, the limit of the ratio as Δv tends to zero is the same as the 
ratio at any fixed band of values of v corresponding to ±Δv = ±10−6 or smaller. (Matlab 
is accurate to 15 digits.) 

Consider the area of the whole region, � v0 +Δv � 1 du
area(v0 < xy < v0 + Δv) = dv 

uv0 v 

On a very short interval v0 ≤ v ≤ v0 + Δv, the inner integral is nearly constant: � 1 � 1du du 
u 
≈ 

uv v0 

Therefore, � v0 +Δv � 1 du 
� v0 +Δv � 1 � 1du du 

dv ≈ dv = Δv 
u u uv0 v v0 v0 v0 

Similarly, for v0 + Δv ≤ a < b ≤ 1, the area of the part is � v0 +Δv � b � bdu du
area(a < x < b and v0 < xy < v0 + Δv) = dv = Δv 

u uv0 a a 

So the factor Δv cancels in the ratio of the part to the whole, � b du 
� b duΔv 

a u a uP (a < x < b v0 ≤ v ≤ v0 + Δv) ≈ � 1 du 
� 1 du

| 
Δv 

= 
v0 u v0 u 

In the limit as Δv → 0, � b du 
a uP (a < x < b | v = v0) = � 1 du 
v0 u 

There are pitfalls in dealing with zero area sets like xy = v0. For example, one may 
be tempted to use the ratio of the arclength of the curve on the portion a < x < b to the 
total arclength of xy = v0. This gives the wrong answer. The reason is that the band 
v0 ≤ xy ≤ v0 + Δv does not have uniform thickness. If it did, then the weighting or density 
would be equivalent to arclength. Put another way, if one tries to partition the square 
into subsets of uniform thickness around curves of the form xy = v0 this cannot be done 
without overlapping bands or bands that miss substantial sections. By contrast, the bands 
v0 ≤ xy ≤ v0 + Δv are compatible with partitioning without gaps or overlaps: use pieces of 
the form kΔv ≤ xy ≤ (k + 1)Δv, k = 0, 1, . . . . 
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Expected value, variance, and standard deviation:

Rescaling the normal distribution.


This section is optional reading. It introduces a few standard notions and terminology 
from probability theory. Recall that if a variable x is distributed with a density g(x), then � b 

P (a < x < b) = g(x)dx, g(x) ≥ 0 
a 

Since the total integral is 1, the average value or mean of x is 
∞ 

µ = xg(x)dx 
−∞ 

(µ for mean). In probability, the upper case letter X denotes something called a random 
variable, which can be viewed as a quantity that will vary depending on each sampling of 
the variable.1 The mean or expected value of X, E(X), is a theoretical value for what one 
would expect to get if one averaged over several samples of the variable X. This quantity 
is the same as the average value or mean value of x, 

∞ 

E(X) = xg(x)dx = µ 
−∞ 

One can take the expected value of any function of f (X). The formula is 

∞ 

E(f (X)) = f (x)g(x)dx 
−∞ 

Again, this is a weighted average of f . The expected value of X is just the special case 
f (X) = X. It is also interesting to evaluate the expectation of functions like f (X) = Xk , 

tXcalled the kth moments of X, and f (X) = e . 

The variance V (X) is a measure of the likelihood that X is far from its mean. It is the 
average of the square of the distance from X to its mean, (x − µ)2 , 

V (X) = E((X − µ)2) = 
∞ 

(x − µ)2 g(x)dx 
−∞ 

Because the variance involves the square of distance, it is natural to take a square root (as 
in the Pythagorean theorem). The standard deviation is defined by 

σ(X) = V (X) 

We can now explain the scaling of the normal distribution. There is a probability density 
for each σ > 0, 

gσ (x) = √
2
1 

πσ
e−x 2 /2σ2 

It has three properties: 
∞ 

gσ (x)dx = 1 (total integral 1), (1) 
−∞ 

1For instance, in Matlab the command rand(3,4) produces a 3 × 4 matrix with each element chosen 
uniformly distributed between 0 and 1. The entries are also independent of each other. Independence is a 
key concept in probability. But it would take us too far afield to discuss it in any detail. 
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∞ 

xgσ (x)dx = 0 (mean 0), (2) � 
−∞


∞ 
2
x gσ (x)dx = σ2 (variance σ2). (3) 

−∞ 

To shift the mean to µ, take 

gσ (x − µ) = 
1 

e−(x−µ)2 /2σ2 
√

2πσ 

The standard deviation σ or the variance σ2 measures how far the distribution is from its 
mean value. For larger σ, gσ (x) is flatter and has a smaller maximum value 1/

√
2πσ. In 

other words, it is more weighted towards larger values, and X2 is more likely to take on 
larger values. The formula for the variance above is an exact, quantitative expression of 
this qualitative comparison between the shapes of the graphs of the densities gσ for different 
values of σ. 

1 2
The function G(x) = √

π
e−x considered in Example 3 above equals gσ for σ = 1/

√
2. 

Thus G is the normal distribution with mean 0 and standard deviation 1/
√

2 (variance 1/2). 

To confirm (1), (2), and (3), recall that we already showed that 
∞ 

e−x 2 

dx = 
√

π 
−∞ 

Change variables by x = az, dx = adz, to get 
∞ 

2 2 z e−a adz = 
√

π 
−∞ 

12Putting a =
2σ2 

, 
∞ 

e−z 2 /2σ2 
√1

2σ
dz = 

√
π (4) 

and dividing by 
√

π gives (1). 
−∞ 

Next, multiply (4) by 
√

2σ to obtain 
∞ 

e−z 2 /2σ2 

dz = 
√

2πσ (5) 
−∞ 

Differentiating the left side of (5) with respect to σ gives 
2d ∞ 

e−z 2 /2σ2 
∞ ∂

e−z 2 /2σ2 
∞ z

e−z 2 /2σ2 

dz = dz = dz 
dσ ∂σ σ3 

−∞ −∞ −∞ 

On the other hand the derivative of right hand side of (5) with respect to σ is 
√

2π. Hence, 
2∞ z
e−z 2 /2σ2 

dz = 
√

2π 
σ3 

−∞ 

Dividing by 
√

2π and multiplying by σ2 yields (3). 

Finally, (2) is obvious because the integrand is odd. To confirm that the mean is µ for 
the density gσ (x − µ), change variables to z = x − µ. Then, using (2) and (1), 

∞ ∞ ∞ ∞ 

xgσ (x − µ)dx = (z + µ)gσ (z)dz = zgσ (z)dz + µ gσ (z)dz = 0 + µ = µ 
−∞ −∞ −∞ −∞ 
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