18.02 - Solutions of Practice Final A - Spring 2006
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Problem 1. PQ = (2,0,3); PR=(1,-2,2); PQx PR=|2 0 3 |=6i—j—4k
1 -2 2
Equation of the plane: 6x —y — 4z = d. Plane passing through P: 6-0—1—-4-0=d.
Equation of the plane: 6x —y — 4z = —1.

Problem 2. Parametric equation for the line: P; + t]TP; =(-1,2,-1)+¢(2,2,1) =

= (=1+2t,2+42t,—1+1t), that is x(t) = =14+ 2t, y(t) =2+ 2¢, 2(t) = =1 + ¢.
Intersection: 3z(t) —2y(t) +2(t) =1 = —3+6t—4—4t—1+t=1 = —8+3t=1,
that is t = 3, which corresponds to the point (5,8, 2).

The function 3z — 2y + z — 1 takes value —1 at the origin and —6 at P,, which are both
negative. So P, and the origin are in the same half-space.

Problem 3. a) A is not invertible if and only if det(A) = 0.

det(A) = 1 ' 1 5 |2 _31 ; _31 8= —2(=2-3¢)+(—c—12) = 24+ 5c =
= ¢(b — ¢), hence A is not invertible if and only if ¢ =0 or ¢ = 5.

b) For ¢ =1, det(A) = 4.
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Problem 4. a) %(t) = ¢'(cost—sint,sint+cost) and |5(¢)|? = e*(cos? t+sin’t—2sint cost+
+sint + cos?t + 2sint cost) = 2e*, so the speed is |G(t)| = v/2¢t.
b) cosd ’Ij’l:J: _ e?(cost,sint) - (cost — sint,sint + cost) _ ﬁ, s 0 = +r/4d
7| |9 V22 2
Problem 5. a) Vf = (3% + 4%, 22y — 2) and Vf(1,2) = (7,2).
F1.1,1.9) ~ £(1,2) + (0.1, —0.1) - VF(1,2) = 1 1 0.7 — 0.2 = 1.5.
b) The velocity is 9(t) = (3t%, 4t) and 'B(l) = (3,4).
t=1 corresponds to the point (1, 2)
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Problem 6.

P

Problem 7. a) Vf = (32 —y,—z + y).

y = 322

r=Y

The critical points are (0,0) and (1/3,1/3).

b) fix = 6z, fuy, = —1, fy, =1, 50 A = 6z — 1. At the origin A(0,0) = —1 < 0, so it is a
saddle point.

c¢) On the boundary z = 0 and f(0,y) = 3%/2, so the minimum at the boundary is 0 attained
at (0,0). The mz;ximum value is +o0.

flz,y) =2 — % + 1(y — )%, 80 f(x,y) — +oo for ¥ — +00 and/or y — +oo. Hence the
minimum can be either at (0,0) or at (1/3,1/3). Because f(1/3,1/3) = —1/54, this is the

minimum value.

Critical points: Vf =0 <

Problem 8. a) Let g(z,y,2) = 2 + yz — 1. Then Vg = (322, 2,y) and

Vg(—1,2,1) = (3,1,2), hence the equation of the tangent plane is 3z + y + 2z = d.

It must pass through (—1,2,1),s0 3(—=1)+2+2(1)=d = d=1.

Equation of the tangent plane: 3z +y + 2z = 1.

b) Constraint = 3dx + dy + 2dz = 0 at (—1,2,1). Keeping z fixed, we get dx = —dy/3.
Because df = adx + bdy + c¢dz at (—1,2,1), we obtain df = (—a/3 + b)dy, that is

af B a
(8_3/) (-1,2,1) =b— 3.

Ve 9
Problem 9. // i dydx—//
—/ ydy =1/2.
0

Problem 10. Direct method. The circle is parametrized by x(6) = acosf, y(0) = asin0,

for 0 < 0 < 27. The work is/ﬁ-d?z/—y?’dx%—x?’dy:
c c

2 1 r=1
. dx dy = / J T [xQ} dy =
0

2T 2T
= / —a®sin® 0(—asin 0 dh) + a® cos® O(acos 0 dh) = a* / (sin 0 + cos® )df =
0 0



7'('/2 3
= 8a* sin® § df = (using the table) = §a4.
0

Using Greens theorem. / F - di = / (N, — M,)dA, where R is the disc of radius a,
¢ R
M = —y? and N = 23, so that N, — M, = 32% + 3y* = 3r%.

2 a 2m 474
3 3
Hence the work is / / 3r?.rdrdf = / de [ r ] — Tt
o Jo 0 41y 2

Problem 11. Call F = 2 and recall that (Flux) = / F - fds.
C

Side z = —1: ﬁ:—i,f)-ﬁzl,sotheﬂuxiSQ.
H

Side x =1 'ﬁ:'i, F-_ﬁ)zl,sotheﬂuxisz

Side y = —1: n= -3, F -n =0, so the flux is 0.

=

Sidey=1: n=3, F -n =0, so the flux is 0.
The total flux out of any square S of sidelength 2 is always 4, because Green’s theorem in

normal form says it is equal to // (M, + N,)dA = // 1-dA = Area(S) = 2% = 4.

Problem 12. Green’s theorem in normal form: / F -nds = / / d1V F)dA, where R is
the region enclosed by C'.
div(f)) = 2x — y + 2, so the flux is given by // (2x —y + 2) dx dy.

(2z—y)?+(5z—y)2<3
Change of variables: u =2z —y, v = bx — ¥y, so

2 —1
det(5 _1)

du dv. Using the symmetry (u,v) — (—u,v), we have

-1 -1

dudv =

d.r dy — ‘a<u7 'U)

1
dudv = = dudv.
(z,y) 3

b

u—+ 2

The integral becomes / /
u?4+v2<3

that the integral / / Y dudv = 0, so that the flux is given by
u?+0v2<3
2 2 9
—dudv = gﬂ'(\/g) = 27.

2402<3 3

2m
Problem 13. In cylindrical coordinates the volume is / / / rdrdfdz.

arctan(1/a) pa/cosp
In spherical coordinates / / / p*sin @ dp dp do+

2m 1/sinp
/ / / 0% sin o dp dp db.
arctan(1l/a)

Problem 14. a) F is conservative if and only if VxF =0 (because F is continuous and
differentiable everywhere).



oo |2 d k
VxF=|0, 0, 0. = (—bsiny —siny)? — (az — 22)3, so we must

2% zsiny 2z+axz+bcosy

have a = 2 and b = —1.

b) Let F = Vf. We must have f, = 22+2xz—cosy, so f(z,y,2) = 22 +x2>—2 cosy+g(z,y).
Moreover, zsiny + g,(z,y) = f, = zsiny = g(x,y) = h(z). Finally, 22 + b'(z) = 2?

= h(z) = constant. Hence, f(z,y,2) = 2? + x2? — zcosy is a potential for F.

c¢) The curve goes from (—1,0,—1) to (1,0,1). Fundamental theorem of calculus for line

integrals: / F . df = £(1,0,1) — f(~1,0,-1)=1—1 = 0.
C

Problem 15. Direct method. On the xy-plane, n = —l%, F -n
7(2)% = —4m. On the portion S of paraboloid, we compute // F.d
S

the shadow of S in the zy-plane.

— = —
dS = (2x,2y,1)dxdy,so F -dS = (22?2 + 2y> + 1 — 2z2) dx dy =
=[22° + 202 + 1 —2(4 — 2> — y»)| dx dy = (47> — T)r dr db.

= —1, so the flux is
ﬁ . .
S by integrating over

2r 2 7r27?
The flux is / / (4r® —Tr) drdf = 27 [7‘4 - 7} = 2m(16 — 14) = 4.

o Jo
The total flux is 47 — 47 = 0. "
Using divergence theorem. The flux is given by /// (6) . F)dV, where D is the solid region
D

enclosed. In our case ? . ﬁ =1+1—2=0, hence the total flux is 0.

A~
A~
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Problem 16. V x F = 0y dy 0, | =621+2x)+ 2+ 12y — 6)k.
—6y% + 6y 2% — 322 —2?
Call R the region of the plane x + 2y + 2z = 1 enclosed by a simple closed curve C' lying

entirely on that plane. Stokes’ theorem: /f-di‘:// <€>< ffl) ds.
c R

1,2,1 2(2 2 12y —

<”>and€xf>-ﬁ:6z+(x>+(x+ y=06)

V6 V6

= V6(x + 2y + z — 1) = 0, because R belongs to the plane z + 2y + z = 1.
— - = - =
Weconcludethat/ F -d'F:// (V x F ﬁ) dS = 0 because V x F -n = 0.
c R

On R we have n =



