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18.02 - Solutions of Practice Final A - Spring 2006 
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Problem 1. 
−�

P R = √ 1, − 2, 2⇐ ; −� −�
kP Q = √ 2, 0, 3⇐ ; −� P Q × P R = � 2 0 3 � = 6ı̂ − ̂� − 4ˆ

� 1 �2− 2 
Equation of the plane: 6x − y − 4z = d. Plane passing through P : 6 0 − 1 − 4 0 = d.· · 
Equation of the plane: 6x − y − 4z = − 1. 

P1P2 = (− 1, 2, − 1) + t 2, 2, 1 =Problem 2. Parametric equation for the line: P1 + t
−−� √ ⇐


= (− 1 + 2t, 2 + 2t, − 1 + t), that is x(t) = − 1 + 2t, y(t) = 2 + 2t, z(t) = − 1 + t.

Intersection: 3x(t) − 2y(t) + z(t) = 1 = → − 3 + 6t − 4 − 4t − 1 + t = 1 = → − 8 + 3t = 1,

that is t = 3, which corresponds to the point (5, 8, 2).

The function 3x − 2y + z − 1 takes value − 1 at the origin and − 6 at P2, which are both

negative. So P2 and the origin are in the same half-space.


Problem 3. a) A is not invertible if and only if det(A) = 0. 
� 4 � � � � 4 �c 

det(A) = 1 
� c 2 � 

− 2 �
� 
− 1 c 

� + � 
− 1 

� = (8 − c2) − 2(− 2 − 3c) + (− c − 12) = − c2 + 5c = 
2 � � c � 

= c(5 − c), hence A is not invertible if and only if c = 0 or c = 5. 
b) For c = 1, det(A) = 4. 

3 3 

⎝ � 
. . . � � � � 

� 1 1 �1 � 1 1 1 2 � 3 
If A−1 = � . . a �, then a = − 

4 � − 1 1 � 
= − 

2 
and b = 

� − 1 4 � 
= 

2
. 

4 . . b 

Problem 4. a) πv(t) = et√ cos t− sin t, sin t+cos t and πv(t) 2 = e2t(cos2 t+sin2 t− 2 sin t cos t+⇐ 
t+ sin2 t + cos2 t + 2 sin t cos t) = 2e2t, so the speed is 

| 
πv(t)|

| 
= 

≤ 
2e . 

πr πv e2t√ cos t, sin t √ cos t − sin t, sin t
| 
+ cos t

≤ 
2
, so ∂ = ± �/4.b) cos ∂ = 

· 
= 

⇐ · ≤ 
2e

⇐ 
= 

2t 2| πr| | πv| 
2Problem 5. a) � f = √ 3x2 + y , 2xy − 2 and � f (1, 2) = √ 7, 2 .⇐ ⇐

f (1.1, 1.9) � f (1, 2) + √ 0.1, − 0.1 � f (1, 2) = 1 + 0.7 − 0.2 = 1.5. 
b) The velocity is πv(t) = √ 3t2 , 4t

⇐ · 
and πv(1) = √ 3, 4 .⇐ ⇐

t = 1 corresponds to the point (1, 2), so 
df �f dx �f dy

(1) = (1, 2) (1) + (1, 2) (1) = 7 · 3 + 2 4 = 29. 
dt �x dt �y dt 

· 
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Problem 6.
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Problem 7. a) � f = √ 3x2 − y, − x + y⇐ . 
y = 3x2 

Critical points: � f = 0 ∞→ 
x = y 

The critical points are (0, 0) and (1/3, 1/3). 
b) fxx = 6x, fxy = − 1, fyy = 1, so � = 6x − 1. At the origin �(0, 0) = − 1 < 0, so it is a 
saddle point. 
c) On the boundary x = 0 and f (0, y) = y2/2, so the minimum at the boundary is 0 attained 
at (0, 0). The maximum value is +≈ . 

2x 1 
f (x, y) = x 3 − 

2
+ (y − x)2 , so f (x, y) � +≈ for x � +≈ and/or y � ±≈ . Hence the 

2 
minimum can be either at (0, 0) or at (1/3, 1/3). Because f (1/3, 1/3) = − 1/54, this is the 
minimum value. 

2Problem 8. a) Let g(x, y, z) = x3 + yz − 1. Then � g = √ 3x , z, y⇐ and

� g(− 1, 2, 1) = √ 3, 1, 2⇐ , hence the equation of the tangent plane is 3x + y + 2z = d.

It must pass through (− 1, 2, 1), so 3(− 1) + 2 + 2(1) = d = d = 1.
→
Equation of the tangent plane: 3x + y + 2z = 1.

b) Constraint = → 3dx + dy + 2dz = 0 at (− 1, 2, 1). Keeping z fixed, we get dx = − dy/3.

Because df = a dx + b dy + c dz at (− 1, 2, 1), we obtain df = (− a/3 + b)dy, that is

⎠ ⎛ 

�f a 
�y z 

(− 1, 2, 1) = b − . 
3 

� 1 � �x � 1 � 12xy 
� 1 2xy y � �x=1 

Problem 9. 
1 − y4 

dy dx = 
y2 1 − y4 

dx dy =
1 − y4 

x 2 dy = 
0 0 0 0 x=y2 

� 1 

= y dy = 1/2. 
0 

Problem 10. Direct method. The circle is parametrized by x(∂) = a cos ∂, y(∂) = a sin ∂, 

F 3for 0 � ∂ � 2�. The work is 
�

dπr = − y 3dx + x dy =
− · 

C C 
� 2� � 2�


3 4
= − a 3 sin3 ∂(− a sin ∂ d∂) + a cos 3 ∂(a cos ∂ d∂) = a (sin4 ∂ + cos 4 ∂)d∂ = 
0 0 
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�	 � � �

� �/2 

= 8a 4 sin4 ∂ d∂ = (using the table) = 
3�

a 4 . 
20	

� �� 
FUsing Green’s theorem. 
�

dπr = (Nx − My )dA, where R is the disc of radius a,
−	 · 

C	 R 
2M	= −y3 and N = x3, so that Nx − My = 3x2 + 3y2 = 3r . 

�	 � �a� 2� a	 � 2� 3r4 

Hence the work is 3r 2 r dr d∂ = d∂ =
3�

a 4 .·	
4 20 0	 0 0 

Problem 11. Call 
−
F	 F ˆ
�

= xı̂ and recall that (Flux) = 
�

n ds.
− ·


n = −ı̂ , 
−
 C 

Side x = −1: ˆ
�

n = 1, so the flux is 2. F	 ˆ· 
n = ı̂ , 

−
Side x = 1: ˆ

�
n = 1, so the flux is 2. F	 ˆ· 

n = −�̂, 
−

Side y = −1: ˆ
�

n = 0, so the flux is 0. F	 ˆ· 
n = �̂, 

−
Side y = 1: ˆ

�
n = 0, so the flux is 0. F	 ˆ· 

The total flux out of any square S of sidelength 2 is always 4, because Green’s theorem in 

normal form says it is equal to (Mx + Ny )dA = 1 dA = Area(S) = 22 = 4. 
S S 

· 

F	 ˆ
�

Problem 12. Green’s theorem in normal form: 
�

n ds = div(
−
F )dA, where R is

− · 
C	 R 

the region enclosed by C. 

div(
−
F ) = 2x − y + 2, so the flux is given by	 (2x − y + 2) dx dy. 

(2x−y)2 +(5x−y)2 <3 

Change of variables: u = 2x − y, v = 5x − y, so 

� � � ⎠ 
� �(u, v) �−1 

� 2 −1 
⎛

�

�

�

−1 
1 

dx dy = � � du dv = �det	 du dv = du dv. 
� �(x, y) � � 5 −1 � 3 

u + 2 
The integral becomes	 du dv. Using the symmetry (u, v) ⇒� (−u, v), we have 

3u2 +v2 <3 
u 

that the integral du dv = 0, so that the flux is given by 
3u2 +v2 <3 

2 2 
du dv = �(

≤
3)2 = 2�. 

3 3u2+v2 <3 
� 1� a � 2� 

Problem 13. In cylindrical coordinates the volume is r dr d∂ dz. 
0	 0 0 

� 2� � arctan(1/a) � a/ cos � 

In spherical coordinates ϕ2 sin � dϕ d� d∂+ 
0 0 0 

� 2� � �/2 � 1/ sin � 

+	 ϕ2 sin � dϕ d� d∂. 
0 arctan(1/a) 0 

F is conservative if and only if 
−

F = 0 (because 
−

Problem 14. a) 
−	 � ×−

F is continuous and 
differentiable everywhere). 
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ˆ �� 
ı̂ �̂ k − �

= � �x

�
F �y �z 

� = (−b sin y − sin y)ı̂ − (az − 2z)�̂, so we must � × −
� z2 z sin y 2z + axz + b cos y 

have a = 2 and b = −1. 
F
�

= �f . We must have fz = 2z +2xz −cos y, so f (x, y, z) = z2 +xz2 z cos y+g(x, y).b) Let 
− −

2Moreover, z sin y + gy (x, y) = fy = z sin y = → g(x, y) = h(x). Finally, z2 + h�(x) = z

= h(x) = constant. Hence, f (x, y, z) = z2 + xz2 − z cos y is a potential for 
−
F .→

c) The curve goes from (−1, 0, −1) to (1, 0, 1). Fundamental theorem of calculus for line 

Fintegrals: 
�

dπr = f (1, 0, 1) − f (−1, 0, −1) = 1 − 1 = 0. 
− ·

C 

F ˆˆ k, 
�

n = −1, so the flux is Problem 15. Direct method. On the xy-plane, n = −ˆ
�� 

− ·
− · �
F S by integrating over �(2)2 = −4�. On the portion S of paraboloid, we compute 
�

d
−

S 
the shadow of S in the xy-plane. 
S 

�
d
−

F 
��

= 2x, 2y, 1⇐ dx dy, so 
−

S = (2x2 + 2y2 + 1 − 2z) dx dy =d
− √

= [2x 2 + 2y 2 + 1 − 2(4 − x 2 −
·
y 2)] dx dy = (4r 2 − 7)r dr d∂. 

� 2 � 
7r2 �2� 2�


4
The flux is (4r 3 − 7r) dr d∂ = 2� r = 2�(16 − 14) = 4�.− 
2 00 0 

The total flux is 4� − 4� = 0. 

Using divergence theorem. The flux is given by (
−

F )dV , where D is the solid region 
D 

� ·−

enclosed. In our case 
−

F = 1 + 1 − 2 = 0, hence the total flux is 0. � ·
� 

−
� 

ˆ �� 
ı̂ �̂ k 

Problem 16. 
−

F k.
� �

= � �x �y �z 
� = 6zı̂ + 2x�̂ + (2x + 12y − 6)ˆ� ×−

� −6y2 + 6y x2 − 3z2 x2 
�−

Call R the region of the plane x + 2y + z = 1 enclosed by a simple closed curve C lying 

entirely on that plane. Stokes’ theorem: 
�

dπr = 
� �

n 
⎞ 

dS.F 
−

F ˆ
C 

− ·
R 

�

� ×− ·
1, 2, 1 6z + 2(2x) + (2x + 12y − 6) 

n = 
√ ≤

6 

⇐ 
and 

−
F ˆOn R we have ˆ

� �
n = =� ×− · ≤

6 
= 

≤
6(x + 2y + z − 1) = 0, because R belongs to the plane x + 2y + z = 1. 

F 
−

F ˆ
� �

n = 0. We conclude that 
�

dπr = 
� �

n 
⎞ 

dS = 0 because 
−

F ˆ
C 

− ·
R 

�

� ×− · � × − ·


