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6. Vector Integral Calculus in Space

6A. Vector Fields in Space

6A-1 a) the vectors are all unit vectors, pointing radially outward.
b) the vector at P has its head on the y-axis, and is perpendicular to it

6A-2 I(—zi—yj—zk)
6A-3 w(—2zj +yk)

6A-4 A vector field F = M1 + Nj + Pk is parallel to the plane 3z — 4y + 2z = 2 if it is
perpendicular to the normal vector to the plane, 3i —4j + k: the condition on M, N, P
therefore is 3M —4N + P =0, or P =4N - 3M.

The most general such field is therefore F = Mi + Nj + (4N —3M) k, where M and N
are functions of z,y, z.

6B. Surface Integrals and Flux

zi+yj+zk
a

6B-1 We have n= ; therefore F-n=a.

Flux through S = // F-ndS = a(area of S) = 4w a®.
s

6B-2 Since k is parallel to the surface, the field is everywhere tangent to the cylinder,
hence the flux is 0.

i+j+k | 1
6B-3 ————— is a normal vector to the plane, so F-n= —.
V3 ’ V3
i L(base)(height)  1(v/2)(£2
Therefore, flux = area of region _ 5 (base) (height) _ 2(\/_)( 2 V2) _ 1
V3 V3 V3 2
k 2
6B-4 xl + y‘] t2 y_' Calculating in spherical coordinates,
flux —//——dS— / / a*sin® ¢sin? 0 dgp df = a3 / / sin® ¢ sin? 0 dgpde.
Inner integral: sin®4(— cos @ + % cos qS)] = %sm f;
0

Ky
Outer integral: 4a(30 — 1sin 29)] = Zrad.
0
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i+ji+k z
6B-5 n=-—31°. F.n="
V3 V3

z dzdy 1 / dzdy //1 4

= — l—-z- (1—-z—y)dzdy.
//fln k| V3 s( 1/f
Inner integral: =z——%z2—zy] = (1 -y)%

0

1

Oterinteral-—/ll(l ey = 1.1 gyl =1
u gral: = | 5-y’dy=75-—3-1-v°| =5

6B-6 2= f(z,y) = z% +y* (a paraboloid). By (13) in Notes V9,
dS = (—-2zi —2yj + k) dzdy.

(This points generally “up”, since the k component is positive.) Since F =zi +yj +2k,

//F-dS:/ (—22% — 2y% + 2) dzdy )
S R

where R is the interior of the unit circle in the zy-plane, i.e., the projection of S onto the
zy-plane). Since z = z? +y2, the above integral

27 1
—//(z2+y2)dzdy:~/ /r2-rdrd0:—27r-l=—z.
R o Jo 4 2

The answer is negative since the positive direction for flux is that of n, which here points
into the inside of the paraboloidal cup, whereas the flow zi + yj + zk is generally from
the inside toward the outside of the cup, i.e., in the opposite direction.

2

6B-8 On the cylindrical surface, n = %, F.-n= y;.

In cylindrical coordinates, since y = asin 6, this gives us F-dS = F-ndS = a?sin” § dz df.
/2 /2 090\ /2

Flux —/ / a?sin? 0 dz df = azh/ sin? 0 df = azh(g -= 0) =Za?h.
/2 /2 2 4 ) 2

6B-12  Since the distance from a point (z,y,0) up to the hemispherical surface is z,

[f[szdS
JlsdS "~

2 pm/2
In spherical coordinates, / / zdS = / / acos ¢ - a® sin ¢ de db.
s o Jo

average distance =

m/2 s 2 w/2 3 3 27
Inner: = a3/ sin ¢ cos p d¢p = ag(m] =% Outer: = EZ—/ df = ma®.
0 2, 2 2 Jo

a® a
Finally, / / dS = area of hemisphere = 2ma?, so average distance = ™2
s

2ma? 2
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6C. Divergence Theorem
6C-1a divF =M, +Ny+ P, =2zy+z+z=2z(y+1).
6C-2 Using the product and chain rules for the first, symmetry for the others,
(p"z)e =np™ %:v +0"% (p"Y)y =np™ ! %y +o% (p"2); =np™ %z + 0%

o1 T2+ y? + 22

; + 3p™ = p"(n+3).

adding these three, we get div F =np
Therefore, div F =0 < n=-3.

6C-3 Evaluating the triple integral first, we have div F =3, therefore

2
/// div FdV = 3(vol.of D) = 3 §7ra3 = 27ma3.
D

To evaluate the double integral over the closed surface S = S1 + .95, the respective normal

vectors are: . .
_zi+yj+zk

a

n; (hemisphere S;), n, = -k (disc S3);

using these, the surface integral for the flux through S is

2 2 2
//F-dS:// Mmﬂ// —zdS=// ads,
S S a Sa $1

since 22 +y? + 22 = p2 =a%on Si, and 2 =0 on S,. So the value of the surface integral is
a(area of S;)= a(2ma?) = 2ma?,

which agrees with the triple integral above. 1

6C-5 The divergence theorem says / / F.-dS= / / / div F dV.
s D

Here div F = 1, so that the right-hand integral is just the volume of the

tetrahedron, which is % (base)(height)= 1(3)(1) = .

6C-6 The divergence theorem says / / F.dS = / / / div FdV.
s D

Here div F = 1, so the right-hand integral is the volume of the solid cone, which has
height 1 and base radius 1; its volume is §(base)(height)= /3.

6C-7a Evaluating the triple integral first, over the cylindrical solid D, we have

div F =2z + z = 3x; /// 3zdV =0,
D

since the solid is symmetric with respect to the yz-plane. (Physically, assuming the density
is 1, the integral has the value Z(mass of D), where Z is the z-coordinate of the center of
mass; this must be in the yz plane since the solid is symmetric with respect to this plane.)

To evaluate the double integral, note that F has no k-component, so there is no flux
across the two disc-like ends of the solid. To find the flux across the cylindrical side,

n=zi+yj, F-n=2%+2y?=2%+2(1 - 2% =g,
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since the cylinder has radius 1 and equation z? + y? = 1. Thus

27 1 27
//a:dS:/ / cos€dzd9=/ cosfdf =0.
S o Jo 0

6C-8 a) Reorient the lower hemisphere S; by reversing its normal vector; call the reori-
ented surface S5. Then S = S) + 54 is a closed surface, with the normal vector pointing
outward everywhere, so by the divergence theorem,

[[reas= [ weas [[ pas— [[] avwar o

since by hypothesis div F = 0. The above shows v
// F-dS:—// F-dS=// F-ds,
S1 S4 S2

since reversing the orientation of a surface changes the sign of the flux through it.

b) The same statement holds if S; and Sz are two oriented surfaces having the same
boundary curve, but not intersecting anywhere else, and oriented so that S; and S} (i.e., S2
with its orientation reversed) together make up a closed surface S with outward-pointing
normal.

6C-10 If div F = 0, then for any closed surface .S, we have by the divergence theorem

//SF.dS:///Ddidevzo,

Conversely: / / F - dS = 0 for every closed surface S = divF =0.
s

For suppose there were a point Py at which (div F)g # 0 — say (div F)o > 0. Then
by continuity, div F > 0 in a very small spherical ball D surrounding F,, so that by the
divergence theorem (.S is the surface of the ball D),

//SF'dS=///DdideV > 0.

But this contradicts our hypothesis that / / F - dS = 0 for every closed surface S.
s

6C-11 ﬂuxofF=//F-dn=/// dideV=/// 3dV = 3(vol. of D).
s D D

6D. Line Integrals in Space

6D-1 a) C: z=t,dr=dt; y=1°, dy=2tdt; z=13, dz=3t%dt;
1
/ydz+zdy—a:dz = / (t%)dt + t3(2t dt) — t(3¢2 dt)
C 0

1 3 5 471
= / (82 +2t* — 3¢%)dt = t_+2i_3i] _
0

375 4],

[\ JUY (S

1
by C: z=t, y=t, z=t /yd:c+zdy—:cdz = / tdt =
c 0
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¢c) C=C+Cy+Cs; Ci:y=2=0; Co:z=1,2=0; Cs:z=1,y=1

1
/ydz+zdy—zdz = / 0—+—/ 0—+—/ —dz = —1.
C Ch Ca 0

d) C:z=cost, y=sint, z=1; zxdr + 2zydy +zdz
c

27 27
= / tcost(—sint dt) + tsint(costdt) + costdt = / costdt = 0.
0 0

6D-2 The field F is always pointed radially outward; if C lies on a sphere centered at
the origin, its unit tangent t is always tangent to the sphere, therefore perpendicular to the
radius; this means F -t = 0 at every point of C. Thus [, F-dr = [, F-tds =0.

6D-4 a) F=Vf=2z1+2yj +2zk.
b) (i) Directly, letting C be the helix: z = cost, y =sint, z =, from ¢ = 0 to ¢t = 2nm,
2n7w 2nm
/ Mdz + Ndy + Pdz = / 2 cost(—sint)dt + 2sint(cost)dt + 2t dt = / 2t dt = (2nm)2.
c 0 0

b) (ii) Choose the vertical path z =1, y =0, 2z = ¢; then

2nm
/ Mdz + Ndy + Pdz = / 2t dt = (2nm)2.
C o]

b) (iil) By the First Fundamental Theorem for line integrals,
/ F.dr = f(1,0,2n7) — £(1,0,0) = 91% + (2n7)?) — 12 = (2n7)?
c
6D-5 By the First Fundamental Theorem for line integrals,

F . dr = sin{zyz)| - sin{zyz
I (ay2)| - sin(ay)],
where C is any path joining P to @. The maximum value of this difference is 1 — (-1) = 2,
since sin(zyz) ranges between —1 and 1.
For example, any path C connecting P : (1,1,-7/2) to @ : (1,1,7/2) will give this

maximum value of 2 for [, F - dr.

6E. Gradient Fields in Space

6E-1 a) Since M = z2, N =y?%, P = 22 are continuously differentiable, the differential is
exact because N, =P, =0, M, =F, =0, My =N, =0.

b) Exact: M, N, P are continuously differentiable for all z,y, 2, and
N,=P,=2zy, M,=PF, =y M,=N,=2yz

¢) Exact: M, N, P are continuously differentiable for all z,y, 2, and
N,=Py=z, M,=PF, =y, M,=N,=62%+2.
i ] k

6E-2 cwlF=|8, 8, 8, |=(z2?-y)i—-yz?j—z%k.

T2y yz zyz?
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6E-3 a) It is easily checked that curl F = 0.
b) (i) using method L

(=1,01,21) Gxp o3P
f(I1,y1,21)=/ F-drz/ F-dr+/ F-dr+/ F-dr
(0,0,0) 1 Ca Cs Cy
T1 y1 21 1 1 1 |
=/ :rd:l:+/ ydy+/ zdz = —23 + ~y} + =23, G
0 0 0 2 2 2 x (xl,yl)

Therefore  f(z,y,2) = $(z? +y? +2%) +c. )
(ii) Using method II: We seek f(z,y,z) such that f, = 2zy + 2, f, = z*, f, ==

fo=22y+z = f=zy+zz+g(y,2).
fy=:1:2+gy=:r2 = g,=0 = g=h(z)
fo=z+h(z)=2 = K=0 = h=c

Therefore f(z,y,2) = 2%y + 2z + c.
(ili) If fz =yz, fy==zz, f,=zy, then by inspection, f(z,y,2) = zyz +c.

6E-4 Let F = f —g. Since V is a linear operator, VF=Vf—-Vg = 0
We now show: VF =0 = F=c¢
Fix a point Py : (%o, yo,20). Then by the Fundamental Theorem for line integrals,

P
F(P)~F(R)= | VF:dr=0.
0

Therefore F(P) = F(P,) for all P, i.e., F(z,y,2) = F(zo,Y0, 20) = ¢.

6E-5 F is a gradient field only if these equations are satisfied:

N,=Py: 2zz+ay=bzz+2y M,=PFP,: 2yz=byz M,=N,: 22 =22
Thus the conditions are: a =2, b= 2.
Using these values of a and b we employ Method 2 to find the potential function f:

o=y = f=azy+9(y,2);
fy=z22+g,=222+2y2 = g,=2z = g=y’z+h(z)
fe=2zyz+ 9>+ (2) =2zyz+y> = h=c

therefore, f(z,y,2) = zy2? +y%z +c.

6E-6 a) Mdz+ Ndy + Pdz is an exact differential if there exists some function f(z,y, 2)
for which df = Mdz + Ndy + Pdz; that, is, for which f, =M, f, =N, f.=P.

b) The given differential is exact if the following equations are satisfied:

N, =P, : (a/2)z? + 6zy?2z + 3byz? = 322 + 3czy?z + 12y2?;
M,=P,: azy+ 2y°z =6zy +cy’z
My =N, : azz+3y?2? = azz + 3y?2%.

Solving these, we find that the differential is exact if a =6, b=4, c=2.
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c) We find f(z,y, z) using method 2:

fo=6ayz+y®2? = f=3a%yz+ay’2® +g(y,2);
fy =32%2 4+ 3zy%2% + g, = 3x22 + 3zy?2t + 4y2® = g, =4yl = g 2y22% + h(z )
f: = 322y + 22932 + 6222 + KW (2) = 3z%y + 2xy32 + 63222 = HK(z)= = h

Therefore, f(z,y,2) = 3z%yz + zy®2% + 2y%23 + ¢

6F. Stokes’ Theorem n

6F-1 a) For the line integral, ?{ F.dr= ?{ zdz + ydy + zdz = 0,
c c

since the differential is exact. c

1 ]
For the surface integral, VxF=|0; 8, 0,|=0, and therefore / / VxF-dS =0.
T Yy =z 5

b) Line integral: ?{ ydz + zdy + zdz = ¢ ydz, since z=0and dz=00n C.
c

c
2w 2w
. . . 1—cos2t
Using z = cost, y = sint, / —s1n2tdt:—/ ——dt = —m.
0 0 2
i j k
Surface integral: curl F = 8,, 8, 8,|=-i-j—k; n=zi+yj+zk
z T

//VxF) ndS =—//S(.'L'+y+z)d5.

To evaluate, we use = =rcosd, y=rsinf, z=pcos¢. r = psing, dS = p?sinddpdh;
note that p = 1 on S. The integral then becomes

2
- / / [sin ¢(cos 0 + sin 6) + cos @] sin ¢ d¢ df
o Jo
m/2
Inner: — [(cos 0 + sin 6)(3 —  cos 2¢) + 3 sin’ ¢>] = - [(cos g+ sinf) + %
0
2 1
Outer: / (== —cosf —sinf)df = —
0 2
6F-2 The surface Sis: z= —z —y, so that f(z,y) = -z —y.

ndS = (—fz,~fy, 1) dzdy = (1,1,1) dz dy.

(Note the signs: n points upwards, and therefore should have a positive k-component.)

i j k
curlF=|0, 6, 0.|=-i—-j—-k
y z =z

Therefore curl F-ndS = — // 3dA = —3m, where S’ is the projection of S, i.e.,
S !
the interior of the unit circle in the zy-plane.

As for the line integral, we have C': z =cost, y =sint z = —cost —sint, so that
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27
7{ ydz + zdy + xdz = / [— sin® ¢ — (cos® ¢ + sint cost) + cos t(sint — cos t)] dt
¢ 2w 0 2m 1 3
= / (—sin®t — cos® t — cos? t) dt = / [—1 -1+ cos2t)] dt = —= - 27 = —3m.
0 0 2 2
6F-3 Line integral: 7{ yzdz + zzdy + xy dz over the path C =C) +...+ Cy:
c

/ =0, sincez=dz=0onC;
Cy

1
/:/1-1dz=1, sincex =1, y=1, de =0, dy =0 on Cy;
C2

0
/yd:c+:cdy=/xdx+:cd:c:—1, sincey =z, z=1, dz=0on Cs;
Cs 1

—O since £ =0, y = 0 on Cy.

Adding up, we get 7{ F.dr = / / / / 0. For the surface integral,
o Jo, Joz Jo,

i J
curl F = |9, &, 32
yz Tz TY

iz—2)-jly—y)+ k(z—-2)=0; thus//curlF dsS =0.

6F-5 Let S; be the top of the cylinder (oriented so n = k), and Sy the side.

i j k
a) Wehave curl F=| 9, 9, 3 =-2zj +2k. 85
<, D
For the top: // curlF-ndS:// 2dS = 2(area of S;) = 2mwa?. c
51 Sl
zi+yj

For the side: we have n = ,and dS = dz-adf, so that
27

a
2 _ 2T
// curl F-ndS = / / 2:':yad d0—/ ~2h(acosf)(asinf) df = —ha®sin® 0] =0.
Sa

0
Adding, // curl F-dS = / // = 27a’.
5 )

b) Let C be the circular boundary of S, parameterized by z = acosd, y = asind, z =0.
Then using Stokes’ theorem,

27
// curlF-dS:?f —yd:c+:cdy+:v2dz=/ (a2sin26’+a2cos20)d6’:27ra2.
s c 0

6G. Topological Questions
6G-1 a)yes b)no c)yes d) no;yes; no; yes; no
6G-2 Recall that p, = z/p, etc. Then, using the chain rule,

curl F = (np" "'z y —np" 1y E)i + (np™ "tz z —np" 1z E)j + (np™ 1y r_ np" g
p p p p p

S @
o
=
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Therefore curl F = 0. To find the potential function, we let Py be any convenient
starting point, and integrate along some path to P : (z1,¥1,21). Then, if n # —2, we have

P Py 1
/F-dr:/ p"(a:da:+ydy+zdz):/ p™ = d(p?)
C ) P Py 2
_ / P p"“] S A A

dp = =
pop P n+2|p n+2 n+2 n+2

pn+2
Theref F= if —2.
erefore, we get Vn+2, if n #

+ ¢, since P is fixed.

P
1d
If n = —2, the line integral becomes / 7‘0 =1Inp; +¢, so that F = V(lnp).
Py

6H. Applications and Further Exercises

6H-1 Let F= Mi+ Nj+ Pk. By the definition of curl F, we have
VXxF=(P—N,)i+ (M, - P)j+ (N, — M)k,
V (VX F)=(Pyg — Nog) + (Mzy — Poy) + (Noz — My,)
If all the mixed partials exist and are continuous, then P, = P, etc. and the right-hand

side of the above equation is zero: div (curl F) = 0.

6H-2 a) Using the divergence theorem, and the previous problem, (D is the interior of S),

//curlF-dS:/// divcurleV:/// 0dV =0.
S D D

b) Draw a closed curve C on S that divides it into two pieces S; and S both having C
as boundary. Orient C compatibly with S;, then the curve C’ obtained by reversing the
orientation of C will be oriented compatibly with S;. Using Stokes’ theorem,

//curlF-dS:// curlF-dS+// curlF-dS:]{F-dr+]{ F-dr =0, 9
s S, Sa c ’

since the integral on C’ is the negative of the integral on C.

Or more simply, consider the limiting case where C has been shrunk to a point; even as
a point, it can still be considered to be the boundary of S. Since it has zero length, the line
integral around it is zero, and therefore Stokes’ theorem gives

//curlF'dS = fF-dr = 0.
S C

6H-10 Let C be an oriented closed curve, and S a compatibly-oriented surface having C as
its boundary. Using Stokes’ theorem and the Maxwell equation, we get respectively

//VxB-dS:]{B-dr and //VdeS //IBE 1d//EdS
S C sC ot cdt

Since the two left sides are the same, we get ]{ B.dr=-— / / E-ds.
c

In words: for the magnetic field B produced by a moving electric field E(t), the magneto-
motive force around a closed loop C is, up to a constant factor depending on the units, the
time-rate at which the electric flux through C is changing.





