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TA. The Tangent Approximation 

1. Partial derivatives 

Let w = f (x, y) be a function of two variables. Its graph is a surface in xyz-space, as 
pictured. w 

Fix a value y = yo and just let x vary. You get a function of one variable, 

(1) w = f (x, yo), the partial function for y = yo. 

Its graph is a curve in the vertical plane y = yo, whose slope at  the 
point P where x = xo is given by the derivative 

d 
(2) fdx x Y O , Or a f l  . x 

xo (XO,YO) 


We call (2) the partial derivative of f with respect to x at the point (xo, yo); the right side 
of (2) is the standard notation for it. The partial derivative is just the ordinary derivative 
of the partial function - it is calculated by holding one variable fixed and differentiating 
with respect to the other variable. Other notations for this partial derivative are 

the first is convenient for including the specific point; the second is common in science 
and engineering, where you are just dealing with relations between variables and don't 
mention the function explicitly; the third and fourth indicate the point by just using a 
single subscript. 

Analogously, fixing x = xo and letting y vary, we get the partial function w = f (xo, y), 
whose graph lies in the vertical plane x = xo, and whose slope a t  P is the partial derivative 
o f f  with respect t o  y; the notations are 

The partial derivatives d f l d x  and d f ldy depend on (xo, yo) and are therefore functions of 
x andy.  

Written as aw/dx, the partial derivatrive gives the rate of change of w with respect to 
x alone, at  the point (xo, YO): it tells how fast w is increasing as x increases, when y is held 
constant. 

For a function of three or more variables, w = f (x, y, z ,  . . . ), we cannot draw graphs any 
more, but the idea behind partial differentiation remains the same: to define the partial 
derivative with respect to x, for instance, hold all the other variables constant and take the 
ordinary derivative with respect to x; the notations are the same as above: 
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Your book has examples illustrating the calculation of partial derivatives for functions of 
two and three variables. 

2. The tangent plane. 

For a function of one variable, w = f (x), the tangent line to its graph a t  a point (XO, WO) 

is the line passing through (xo, wo) and having slope ($1 . 

For a function of two variables, w = f (x, y), the natural analogue is the tangen t  plane to 
the graph, at  a point (xo, yo, wo). What's the equation of this tangent plane? Referring to 
the picture of the graph on the preceding page, we see that the tangent plane 

(i) must pass through (xo ,yo, WO) , where wo = f (xo,YO); 

(ii) must contain the tangent lines to the graphs of the two partial functions - this will 
hold if the plane has the same slopes in the i and j directions as the surface does. 

Using these two conditions, it is easy to find the equation of the tangent plane. The 
general equation of a plane through (XO, yo, wo) is 

Assume the plane is not vertical; then C # 0, so we can divide through by C and solve for 
w -wo, getting 

(3) w -wo = a(x - $0) + b(y - yo), a = AIC, b = BIC.  

The plane passes through (xo, yo, wo); what values of the coefficients a and b will make it 
also tangent to the graph there? We have 

a = slope of plane (3) in the i-direction (by putting y = yo in (3)); 
= slope of graph in the i-direction, (by (ii) above) 

(by the definition of partial derivative); similarly, 

Therefore the equation of the tangent plane to  w = f (x,y) at  ($0, yo) is 

Your book has examples of calculating tangent planes, using (4). 

3. The approximation formula. 

The most important use for the tangent plane is to give an approximation that is the 
basic formula in the study of functions of several variables - almost everything follows in 
one way or another from it. 

The intuitive idea is that if we stay near ($0, yo, wo), the graph of the tangent plane (4) 
will be a good approximation to the graph of the function w = f (x, Y). Therefore if the 
point (x, y) is close to ($0, yo), 

f (x, y) = wo + (g)(2 - $0) + (2)(Y-YO) 
0 0 

height of graph % height of tangent plane 
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The function on the right side of (5) whose graph is the tangent plane is often called the 
linearization of f (x, y) a t  (xo, yo): it is the linear function which gives the best approxima- 
tion to f (x, y) for values of (x, y) close to (50, YO). 

An equivalent form of the approximation (5) is obtained by using A notation; if we put 

then (5) becomes 

This formula gives the approximate change in w when we make a small change in x and y. 
We will use it often. 

The analogous approximation formula for a function w = f (x, y, z) of three variables 
would be 

(7) if Ax, A ~ A Z  ~i 0 .
AW M (%),AX+ ( E ) , A Y + ( ~ ) , A Z ,  

Unfortunately, for functions of three or more variables, we can't use a geometric argument 
for the approximation formula (7); for this reason, it's best to recast the argument for (6) 
in a form which doesn't use tangent planes and geometry, and therefore can be generalized 
to several variables. This is done at  the end of this Chapter TA; for now let's just assume 
the truth of (7) and its higher-dimensional analogues. 

Here are two typical examples of the use of the approximation formula. Other examples 
are in the Exercises. In the rest of your study of partial differentiation, you will see how the 
approximation formula is used to derive the important theorems and formulas. 

Example 1. Give a reasonable square, centered at  (1, I),  over which the value of 
w = x3y4 will not vary by more than f .1 . 

Solution. We use (6). We calculate for the two partial derivatives 

and therefore, evaluating the partials at  (1, l )  and using (6), we get 

Thus if 1 Ax1 5 .Ol and Ay 1 < .Ol, we should have 

which is within the bounds. So the answer is the square with center at  (1,l) given by 
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Example  2. The sides a ,  b, c of a rectangular box have lengths measured to be respec- 
tively 1, 2, and 3. To which of these measurements is the volume V most sensitive? 

Solution. V = abc, and therefore by the approximation formula (7), 

AV NN bcAa+acAb+abAc  

z 6 A a + 3 A b + 2 A c ,  a t  (1,2,3); 

thus it is most sensitive to small changes in side a ,  since Aa occurs with the largest coefficient. 
(That is, if one at  a time the measurement of each side were changed by say .01, it is the 
change in a which would produce the biggest change in V, namely .06 .) 

The result may seem paradoxical - the value of V is most sensitive to the 
length of the shortest side -but it's actually intuitive, as you can see by thinking 
about how the box looks. 

Sensitivity Principle The numerical value of w = f (x, y, ...), calculated a t  some 
point (xo, yo, . . . ), will be most sensitive to small changes in that variable for which the 
corresponding partial derivative w,, w,, . . . has the largest absolute value a t  the point. 

4. Critique of the approximation formula. 

First of all, the approximation formula (6) is not a precise mathematical statement, since 
the symbol NN does not specify exactly how close the quantitites on either side of the formula 
are to each other. To fix this up, one would have to specify the error in the approximation. 
(This can be done, but it is not often used.) 

A more fundamental objection is that our discussion of approximations was based on the 
assumption that the tangent plane is a good approximation to the surface at  (xo, yo, wo). 
Is this really so? 

Look at  it this way. The tangent plane was determined as the plane which has the same 
slope as the surface in the i and j directions. This means the approximation (6) will be 
good if you move away from (xo, yo) in the i direction (by taking Ay = 0), or in the j 
direction (putting Ax = 0). But does the tangent plane have the same slope as the surface 
in all the other directions as well? 

Intuitively, we should expect that this will be so if the graph of f (x, y) is a "smooth" 
surface at (so, yo) - it doesn't have any sharp points, folds, or look peculiar. Here is the 
mathematical hypothesis which guarantees this. 

Smoothness hypothesis. We say f (x, y) is smooth at  (xO, yo) if 

(8) f, and f, are continuous in some rectangle centered a t  (xO, yo). 

If (8) holds, the approximation formula (6) will be valid. 

Though pathological examples can be constructed, in general the normal way a function 
fails to be smooth (and in turn (6) fails to hold) is that one or both partial derivatives fail 
to exist at (xo, yo). This means of course that you won't even be able to write the formula 
(6), unless you're sleepy. Here is a simple example. 

Example  3. Where is w = Jwsmooth? Discuss. 

Solution. Calculating formally, we get 
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These are continuous at  all points except (O,O), where they are undefined. So the function 
is smooth except at  the origin; the approximation formula (6) should be valid everywhere 
except a t  the origin. 

Indeed, investigating the graph of this function, since w = d w says that 

height of graph over (x, y) = distance of (x, y) from w-axis, /--
the graph is a right circular cone, with vertex at  (0, O), axis along the w-axis, and vertex 
angle a right angle. Geometrically the graph has a sharp point a t  the origin, so there should 
be no tangent plane there, and no valid approximation formula (6) - there is no linear 
function which approximates a cone at its vertex. 

A non-geometrical argument for the approximation formula 

We promised earlier a non-geometrical approach to the approximation formula (6) that 
would generalize to higher-dimensions, in particular to the bvariable formula (7). This 
approach will also show why the hypothesis (8) of smoothness is needed. The argument is 
still imprecise, since it uses the symbol z ,  but it can be refined to a proof (which you will 
find in your book, though it's not easy reading). 

It uses the one-variable approximation formula for a differentiable function w = f (u) : 

We wish to justify -without using reasoning based on bspace -the approximation formula 

We are trying to calculate the change in w as we go from P to R in the 
picture, where P = (xo,yo), R = (xo + Ax, yo + Ay). This change can be 
thought of as taking place in two steps: 

X0+&

the first being the change in w as you move from P to Q, the second the change as you 
move from Q to R. Using the one-variable approximation formula (9) : 

similarly, 

if we assume that fy is continuous (i.e., f is smooth), since the difference between the two 
terms on the right in the last two lines will then be like E Ay, which is negligible compared 
with either term itself. Substituting the two approximate values (11) and (12) into (10) 
gives us the approximation formula (6). 
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To make this a proof, the error terms in the approximations have to be analyzed, or more 
simply, one has to replace the z symbol by equalities based on the Mean-Value Theorem of 
one-variable calculus. 

This argument readily generalizes to the higher-dimensional approximation formulas, such 
as (7); again the essential hypothesis would be smoothness: the three partial derivatives 
w,, w,, w, should be continuous in a neighborhood of the point (so, yo, 20). 

Exercises: Section 2B 




