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V9. Surface Integrals 

Surface integrals are a natural generalization of line integrals: instead of integrating over 
a curve, we integrate over a surface in 3-space. Such integrals are important in any of the 
subjects that deal with continuous media (solids, fluids, gases), as well as subjects that deal 
with force fields, like electromagnetic or gravitational fields. 

Though most of our work will be spent seeing how surface integrals can be calculated and 
what they are used for, we first want to indicate briefly how they are defined. The surface 
integral of the (continuous) function f (x, y, z) over the surface S is denoted by 

You can think of dS  as the area of an infinitesimal piece of the surface S .  To define the 
integral ( I ) ,  we subdivide the surface S into small pieces having area ASi, pick a point 
(xi, yi, zi) in the i-th piece, and form the Riemann sum 

As the subdivision of S gets finer and finer, the corresponding sums (2) approach a limit 
which does not depend on the choice of the points or how the surface was subdivided. The 
surface integral (1) is defined to be this limit. (The surface has to be smooth and not infinite 
in extent, and the subdivisions have to be made reasonably, otherwise the limit may not 
exist, or it may not be unique.) 

1. The surface integral for flux. 

The most important type of surface integral is the one which calculates the flux of a 
vector field across S .  Earlier, we calculated the flux of a plane vector field F(x,  y) across a 
directed curve in the xy-plane. What we are doing now is the analog of this in space. 

We assume that S is oriented: this means that S has two sides and one of them has been 
designated to be the positive side. At each point of S there are two unit normal vectors, 
pointing in opposite directions; the positively directed unit normal vector, denoted by n, is 
the one standing with its base (i.e., tail) on the positive side. If S is a closed surface, like 
a sphere or cube - that is, a surface with no boundaries, so that it completely encloses a 
portion of 3-space - then by convention it is oriented so that the outer side is the positive 
one, i.e., so that n always points towards the outside of S .  

Let F(x, y, z )  be a continuous vector field in space, and S an oriented surface. We define 

(3) flux of F through S = 

the two integrals are the same, but the second is written using the common 
and suggestive abbreviation dS = ndS.  

If F represents the velocity field for the flow of an incompressible fluid of density 1, then 
F .n represents the component of the velocity in the positive perpendicular direction to the 
surface, and F . n d S  represents the flow rate across the little infinitesimal piece of surface 
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having area dS. The integral in (3) adds up these flows across the pieces of surface, so that 
we may interpret (3) as saying 

flux of F through (4) S = net flow rate across S, 

where we count flow in the direction of n as positive, flow in the opposite direction as 
negative. More generally, if the fluid has varying density, then the right side of (4) is the 
net mass transport rate of fluid across S (per unit area, per time unit). 

If F is a force field, then nothing is physically flowing, and one just uses the term "flux" 
to denote the surface integral, as in (3). 

We now show how to calculate the flux integral. It takes a few steps, and is best done by 
examples. The basic things are finding n and dS. We will begin with two surfaces where 
these are easy to calculate - the cylinder and the sphere. Then we will consider a general 
surface. 

Example 1. Find the flux of F = z i + x j + y k outward through the portion of the 
cylinder x2 + y2 = a2 in the first octant and below the plane z = h. 

Solution. The piece of cylinder is pictured. The word "outward" suggests 
that we orient the cylinder so that n points outward, i.e., away from the z- 
axis. Since by inspection n is radially outward and horizontal, 

x i  + y j  
(5) n = a 
(This is the outward normal to the circle x2 +y2 = a2 in the xy-plane; n has 
no z-component since it is horizontal. We divide by a to make its length 1.) 

To get dS, the infinitesimal element of surface area, we use cylindrical coordinates to 
parametrize the cylinder: 

As the parameters 8 and z vary, the whole cylinder is traced out ; the piece we want satisfies 
0 5 8 5 ~ / 2 ,0 5 z 5 h . The natural way to subdivide the cylinder is to use little pieces 
of curved rectangle like the one shown, bounded by two horizontal circles and two vertical 
lines on the surface. Its area dS is the product of its height and width: 

Having obtained n and dS, the rest of the work is routine. We express the integrand of 
our surface integral (3) in terms of z and 8: 

= (az cos 8 + a2 sin 8 cos 8) dz do, using (6). 

This last step is essential, since the dz and d8 tell us the surface integral will be calculated 
in terms of z and 8, and therefore the integrand must use these variables also. We can now 
calculate the flux through S:  

ah2
inner integral = -cos 8 + a2 h sin 8 cos 8

2 

1 ~ 
outer integral = sin 8 + s i  8  

a2h- = -(a + h) . 



V9. SURFACE INTEGRALS 3 

Example 2. Find the flux of F = xz i + yz j + z2k outward through that part of the 
sphere x2 +y2 +z2 = a2 lying in the first octant (x, y, z, 2 0). 

Solution. Once again, we begin by finding n and dS  for the sphere. We take the 
outside of the sphere as the positive side, so n points radially outward from the origin; we 
see by inspection therefore that 

where we have divided by a to make n a unit vector. 

To do the integration, we use spherical coordinates p, q5, 8. On the surface of the sphere, 
p = a, so the coordinates are just the two angles q5 and 8. The area element dS  is most 
easily found using the volume element: 

dV = p2 sin q5 dp dq5 d8 = dS  . dp = area . thickness 

so that dividing by the thickness dp and setting p = a ,  we get 

(9) dS  = a2 sinq5dq5d8. 

Finally since the area element dS is expressed in terms of q5 and 8, the integration will 
be done using these variables, which means we need to express x, y, z in terms of q5 and 8. 
We use the formulas expressing Cartesian in terms of spherical coordinates (setting p = a 
since (x, y, z) is on the sphere): 

We can now calculate the flux integral (3). By (8) and (9), the integrand is 

Using (lo), and noting that x2 +y2 + z2 = a2,  the integral becomes 

J L F - ~ ~ s= a4 l 1 I 2  l r I 2  cos q5 sin q5 dq5 dB 
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2. Flux through general surfaces. 

For a general surface, we will use xyz-coordinates. Two forms for the equation of the 
surface, and the corresponding form for n are: 

V F
n = f - (choose the right sign); 

l VFl 
- fz i  - f g j  + k n =  + + (if n points "up") 
(f: fy2  1)lI2 

The expression (11) for n uses the fact that the gradient V F  is normal to the surface F = c; 
we divided by lVFl to make n a unit vector. To get the second form (l l ' ) ,  write the surface 
in the form z - f (x, y) = 0, and then use ( l l ) ,  taking F (x ,  y, z) to be z - f (x, y). 

As an example of the use of ( l l ) ,  for the sphere x2 + y2 + z2 = a2,  it gives immediately 
the unit normal vector 

1 
n = - (x i  + y j  + z k )  . 

a 

Most often however it is (11') that is used. We will need therefore the 
expression for dS  in xy-coordinates. A natural choice for the infinitesimal 
element of surface is the infinitesimal piece of S lying over the area element 
dx dy in the xy-plane. The area of these two pieces are related by the basic 
formula 

dx dy 
(12) dS  = -. 

In.  k l  

The argument for (12) is as follows. Since dS  is small, we can suppose to a 
first-order approximation that it lies in a plane P .  Then the formula (12) is just 
a special case of a useful result relating the area of region R in the xy-plane with 
the area of the region R' lying above it in the plane P, namely: 

area R 
(13) area R' = - ( n  = unit normal to P ) .  

rJk
In .  k l  

. 
We can see that (13) is true in two steps: 

Step 1: I t  is true if R is a rectangle whose sides Au and Av 
are parallel and perpendicular to the line of intersection L. 

For as the picture shows, the sides of R' are Au and %,where y is both the 
dihedral angle between P and the xy-plane, and the angle between their respective 
normals n and k . Therefore 

Av Au Av 
area R' = Au . --- -

cosy In.  k ) '  

which proves Step 1. 

Step 2: To prove (13) for general plane areas R and R', we subdivide R into 
small rectangles AR of the type used in Step 1. This gives a corresponding 
subdivision of R' into rectangles AR'. (There will be left-over pieces, of course, 
but their area will be negligible if the subdivision is fine enough.) 
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Since (13) is true for each of the little pieces above and below, it is true for 
their corresponding sums as well, and these two sums approximate the area of R 
and R' arbitrarily closely. This completes the argument for (13), and therefore 
also for (12). 

If we apply (11') to (12), we get the explicit expression 

One can think of this as the two-dimensional analog of the one-dimensional formula for the 
infinitesimal arclength along a curve y = f (x): 

Actually, for calculating the surface integral representing flux, what is needed is not dS  
alone, but rather the combination ndS .  If we combine (11') and (129, the square roots 
miraculously cancel each other out, and we end up with the much simpler-looking vector 
formula 

(13) dS = n dS  = (- f ,  i - f ,  j + k )  dx dy (n points "up") 

and this is the formula you will use most frequently in calculating surface integrals for the 
flux through a general surface given by z = f (x, y). 

Example  3. The portion of the plane 22 - 2y + z = 1 lying in the first octant forms 
a triangle S .  Find the flux of F = x i  + y j + z k through S; take the positive side of S as 
the one where the normal points "up". 

Solution. Writing the plane in the form z = 1- 22 + 2y, we get by (13), 

where R is the region in the xy-plane over which S lies. (Note that since the integration 
is to be in terms of x and y, we had to express z in terms of x and y for this last step.) 
To see what R is explicitly, the plane intersects the three coordinate axes respectively at  
x = 112, y = -112, z = 1 . So R is the region pictured; our integral has integrand 1,so its 
value is the area of R, which is 118. 

Remark .  When we write z = f (x, y), we are agreeing to parametrize our surface using 
x and y as parameters. Thus the flux integral will be reduced to a double integral over 
a region R in the xy-plane, involving only x and y. Therefore you must get rid of z by 
using the relation z = f (x, y) after you have calculated the flux integral using (13). Then 
determine R (the projection of S onto the xy-plane), and supply the limits for the iterated 
integral over R. 
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3. Other types of surface integrals. The general surface integral 

that we introduced at  the beginning of this section can be used for many things other than 
calculating flux. Here are some examples. 

a) Surface area. We let the function f (x, y, z) = 1 . Then the area of S = JL ds 

b) Mass, moments, charge etc. If S is a thin shell of material, of uniform thickness, 
and with density (in gms/unit area) given by 6(x, y, z),  then 

mass of S = J j s  6(x,l,2) d s ,  

x-component of center of mass = T = -R x . 6 d s  
mass S 

with the y- and z-components of the center of mass defined similarly. If 6(x, y, z) rep- 
resents an electric charge density, then the surface integral on the left above will give the 
total charge on S .  And so on. 

c) Average value. The average value of a function f (x, y, z) over the surface S can be 
calculated by a surface integral: 

average value of f on s = - f ( x ,  Y, z) d s  . 
area S 

JJs  
In evaluating such integrals as (14), if the surface is a sphere or cylinder, then d S  should 

be written down using the formulas in section 2 of V9, while if the surface is a more general 
one, given by z = f (x, y), then one uses the results of section 3 instead - unfortunately, 
the radical which appears in dS  (see (12') will not disappear, since there is no n to cancel 
it. 

Example 4. Find the average distance along the earth of the points in the northern 
hemisphere from the North Pole. (Assume the earth is a sphere of radius a.) 

Solution. -We use (15) and spherical coordinates, choosing the co- 
ordinates so the North Pole is at  z = a on the z-axis. The distance of 
the point (a, ), 19) from (a, 0,O) is a), measured along the great circle, i.e., 
the longitude line - see the picture). We want to find the average of this 
function 

JL
over the upper 

12= 
hemisphere 

lTi2
S. Integrating, and using (9), we get 

a) d S  = a)a2 sin )d) dI9 = 2ra3 lTi2) sin )d) = 2ra3  . 

(The last integral used integration by parts.) Since the area of S = 27ra2, we get using (15) 
the striking answer: average distance = a . 

Exercises: Section 6B 




