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2. Partial Differentiation 

2A. Functions and Partial Derivatives 

2A-1 In the pictures below, not d l  of the level curves are labeled. In (c) and (d), the 
picture is the same, but the labelings are different. In more detail: 

b) the origin is the level curve 0; the other two unlabeled level curves are .5 and 1.5; 
c) on the left, two level curves are labeled; the unlabeled ones are 2 and 3; the origin is 

the level curve 0; 
d) on the right, two level curves are labeled; the unlabeled ones are -1 and -2; the origin 

is the level curve 1; 
The crude sketches of the graph in the first octant are at the right. 

2A-3 a) both sides are mnxm-' yn-' 
x-Y . -x -(Y b) f, = f x ,  + = (fx), = ' --- f, - x) 
+ = -+ f y x  = 

(x yI2 (x yI3 ' (x yI2 ' (x + Y ) ~  
c) f, = -2xsin(x2+y), f,, = (f,), = -2xcos(x2 +y) ;  

f, = -s in(x2+y),  f,, = -cos(x2+y).2x.  
d) both sides are fl(x)g'(y). 

2A-4 (f,), = ax + 6y, (f,), = 22 + 6y; therefore f,, = f,, H a = 2. By inspection, 
one sees that if a = 2, f (x, y) = x2y + 3xy2 is a function with the given f, and f,. 

2A-5 
a) w, = aeax sin ay, w,, = a2eax sin ay; 

W, = eaxa cos ay, w,, = eaxa2(- sin ay); therefore wyy = -w,,. 

22 2(y2 - x2)
b) We have w, = -+ WXX = + If we interchange x and y, the function 

x2 y2 ' (x2 y2)2 ' 

w = ln(x2 + y2) remains the same, while w,, gets turned into w,,; - - since the interchange 
just changes the sign of the right hand side, it follows that w,, = -w,,. 

2B. Tangent Plane; Linear Approximation 

2B-1 a) z, = y2, z, 
+ 
= 2xy; therefore at (1,1,1), we get z, = 1, z, = 2, so that the 

tangent plane is z = 1 (x - 1) + 2(y - I ) ,  or z = x + 2y - 2. 
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b) w, = -y2/x2, W, = 2ylx; therefore at (1,2,4), we get w, = -4, w, = 4, so 
that the tangent plane is w = 4 - 4(x - 1) + 4(y - 2), or w = -4x + 4y. 

x x Y 2B-2 a) z, = - - - by symmetry (interchanging x and Y), z, = -; then the 
I/- z z 

xo Yo xo Yotangentplaneisz=zo+-(x-xo)+-(y-yo),  or z =  --x+--Y ,sincexi+~:=z: .  
zo 20 zo zo 

b) The line is x = xot, y = yot, z = zot; substituting into the equations of the cone 
and the tangent plane, both are satisfied for all values of t; this shows the line lies on both 
the cone and tangent plane (this can also be seen geometrically). 

2B-3 Letting x, y, z be respectively the lengths of the two legs and the hypotenuse, we 
have z = I/- thus the calculation of partial derivatives is the same as in 2B-2, and 

3 4 7 
we get Az M -Ax + -Ay. Taking Ax = Ay = .01, we get Az M -(.01) = .014.

5 5 5 

2B-4 From the formula, we get R = R1R2 . From this we calculate 
R1+ R2 

dR 2 

, and by symmetry, 
4 

4 1
Substituting R1 = 1, R2 = 2 the approximation formula then gives AR = -ARl+  -AR2.

9 9 
4 1 5

By hypothesis, lARil 5 . l ,  for i = 1,2, so that 1 ARl 5 -(.I) + -(.I) = -(.I) M .06; thus
n 9 9 9 

2B-5 a) Wehave f ( x , y ) = ( ~ + y + 2 ) ~ ,f X = 2 ( x + y + 2 ) ,  f y = 2 ( x + y + 2 ) .  Therefore 

at (0,0), f,(O, 0) = f, (0,O) = 4, f (0,O) = 4; linearization is 4 +42 +4y; 

at (1,2), fx(l,2) = fy ( l ,2) = 10, f ( l ,2)  = 25; 
linearization is 10(x - 1) + 10(y - 2) + 25, or lox + 10y - 5. 

linearization at (0,O): 1+x; linearization at ( 0 , ~ / 2 ) :-y 

dV dV dV2B-6 We have V = r r2h ,  -= 2 ~ r h ,  - " A T +  
dr  a h  = r r 2 ;  A V M ( ~ ) ,  ( = ) , ~ h .  

Evaluating the partials at T = 2, h = 3, we get 

Assuming the same accuracy lArl 5 6, [Ah1< 6 for both measurements, we get 

lAVl 5 1 2 ~ 6  +47r 1 r ~  = 1 6 ~  6, which is < .1 if 6 < 1-
1 


< .002 .
1 6 0 ~  

dT X dT y
2B-7 We have T = Jw, y 

8 =tan- -; - -- - --- -
X ax  T I  dy T '  

Therefore a t  (3,4), T = 5, and AT M ;Ax + $Ay. If lAxl and lAyl are both 5 .01, then 

1A.l 5 ~ I A x ~ + = ;(.0l) = .014 (or .02). 

dI9 -y dI9 - x
Similarly, -= -. -

x2 + - -, so at the point (3,4),
dx y2 '  dy x2 + y2 
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lA8l 5 I 2 A x l + l & A Y I  5 &(.ol) = .0028(or.003). 

Since at (3,4) we have Iry1 > IT, 1 ,  T is more sensitive there to changes in y; by analogous 
reasoning, 8 is more sensitive there to x. 

2B-9 a) w = x2(y+ 1); w, = 2x(y + 1) = 2 at  (1, O), and wy = x2 = 1at (1,O); therefore 
w is more sensitive to changes in x around this point. 

b) To first order approximation, Aw M 2Ax + Ay , using the above values of the 
partial derivatives. 

If we want Aw = 0, then by the above, 2 0 x  + Ay = 0, or AylAx = -2 . 

2C. Differentials; Approximations 

dx dy dz
2C-1 a ) d w = - + - + - b) d ~ = 3 x ~ ~ ~ z d x + 2 x ~ ~ z d y + x ~ y ~ d z  

x y z 
2ydx - 2xdy t d u - u d t

c) dz = d) dw = 
(x + Ill2 t d F 7  

2C-2 The volume is V = xyz; so dV = yz dx + xz dy +xy dz 

For x = 5, y = 10, z = 20, we have 

from which we see that lAV1 5 350(.1); therefore V = 1000 f35. 

2C-3 a) A = i a b  sin 8. Therefore, dA = (b sin 8 da + a sin 8 db + ab cos 8 do). 
b) d A =  3 ( 2 . i d a + l . ; d b + 1 . 2 . i & d 8 )  = i ( d a + i d b + & d 8 ) ;  

therefore most sensitive to 8, least senstitive to b, since dB and db have respectively the 
largest and smallest coefficients. 

C) dA = $(.02 + .O1+ 1.73(.02) M $(.065) z .03 

kT k kT
2C-4 a) P = -; v therefore d P  = -dT v - -dVv2 

P d V  
b) V d P  + kdT -

PdV = k dT; therefore d P  = v . 
c) Substituting P = kTIV into (b) turns it into (a). 

dw dt du dv
2C-5 a) - -= - - - - - - - ;  therefore d w = w 2

w2 t2 u2 v2 
udu  ++ + 2v dv 

b) 2u du 4v dv 6w dw = 0; therefore dw = -
Jw 

2D. Gradient; Directional Derivative 

i - j  - 3JZ
2D-1 a) Vf = 3 x 2 i + 6 y 2 j ;  ( V f ) p = 3 i + 6 j ;  dfl = ( 3 i + 6 j ) - - - - -

ds u JZ 2 
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3 i  - 4 j  
2D-2 a) Vw = - ( V w ) p = - 3 i + 4 j

3x - 4y ' 

el + -3i + 4 j
= (-3i 4 j )  . u has maximum 5, in the direction u = 5 ' ds u 

and 

el 
minimum -5 in the opposite direction. 

4 i  + 3 j  
= 0 in the directions f-. 

5 ds u 

b) V ~ = ( ~ + z , x + z , x + y ) ;  ( V ~ ) p = ( l , 3 ~ 0 ) ;  
i + 3 j  + 3 j  

max m ,  direction -m = -a, i 
= direction --. 

ds 1. 
 dT0 '
-3 i  + j + c k  

= 0 in the directions u = f (for all c) 
mT-2 

c) Vz $I,, = 2sin(t -u)cos(t - u ) ( i  - j )  = s in2( t -u) ( i  - j);  ( V Z ) ~

-:
= i - j ;  

i - j .  - i + j .  
max = h,direction - min = -h,

JZ 
direction 

' ds u JZ ' 
dz i + j

= 0 in the directions f -JZ 

2D-3 a) Vf = (y2z3, 2xyz3,3xy2z2); 

+ 
(Vf)p  = (4,12,36); normal at  P: (1,3,9); 

tangent plane at  P :  x + 3y 9z = 18 

f normal at  P :  (1,4,9), tangent plane: x + 4y + 9z b) V = (2x, 8y, 18z); = 14. 

c) ( V W ) ~  = (2x0, 2yo, -2zo); tangent plane: xo(x -XO)+ yo(y - yo) - zo(z - zo) = 0,
or xox + yoy - zoz = 0, since xg + yi- z i  = 0. 

2xi  + 2 y j  2 i  + 4 j  
2D-4 a) V T  = 

x2 + ( ~ T ) P= 5; 
y2 ' 

i + 2 j  
T is increasing at  P most rapidly in the direction of (VT)p, which is -& .  

2 i + 2 j
b) 1VT1 = -= rate of increase in direction -. Call the distance to go As, then 

& & 

2 i - j
d) In the directions orthogonal to the gradient: f -& 
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2D-5 a) isotherms = the level surfaces x2 + 2y2 + 2z2 = c, which are ellipsoids. 

for most rapid decrease, use direction of -(VT)p : $(I, 2,2) 

c) let As be distance to go; then -6(As) = -1.2; As z .2 

2D-7 At P, let Vw = a i + b j . Then 

a i + b j . * = 2  a + b = 2 hJZ 

i - j

a i  + b j  .- = I  a - b =  JZ
Jz 


Adding and subtracting the equations on the right, we get a = ; a ,  b = ; a .  

2D-8 We have P(O,O,O) = 32; we wish to decrease it to 31.1 by traveling the shortest 
distance from the origin 0; for this we should travel in the direction of -(VP)o. 

V P  = ((y +2)eZ,(x + l )eZ, (x+ l ) (y+2)eZ);  (VP)o = (2,1,2). I(VP)ol = 3. 

Since (-3) . (As) = -.9 + As = .3, we should travel a distance .3 in the direction 
of -(VP)o. Since I - (2,1,2)l = 3, the distance .3 will be of the distance from (O,0,0) 
to (-2, -1, -2), which will bring us to (-.2, -.I, -.2). 

Aw
2D-9 In these, we use -1 z -: we travel in the direction u from a given point P to

As 
the nearest level curve C;  then As is the distance traveled (estimate it by using the unit 
distance), and Aw is the corresponding change in w (estimate it by using the labels on the 
level curves). 

a) The direction of Vf is perpendicular to the level curve at  A, in the increasing sense 
(the "uphill" direction). The magnitude of V f is the directional derivative in that direction: 

Aw 1
from the picture, -z - = 2 .  

As .5 

aw dwl & - d w l
b), c) -= - , , so B will be where i is tangent to the level curve 

dx d s i  dy ds 
and C where j is tangent to the level curve. 

Aw -1 
dy ds As 1 

e) If u is the direction of i + j ,  we have 

Aw -1 
f) If u is the direction of i - j , we have -.8

ds 
g) The gradient is 0 at  a local extremum point: here at  the point 

marked giving the location of the hilltop. 1 
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2E. Chain Rule 

dw aw dx aw dy aw dz
a)  ( i )  - = - - + - - + - - = y z . 1 + x z . 2 t + x y . 3 t 2 = t 5 + 2 t 5 + 3 t 5 = 6 t 5

dt a x  dt dy  dt d z  dt 
dw 

(ii) w = xyz  = t6;  --- 6t5
dt 

dw
(ii) w = x2 - y2 = cos2t - sin2 t = cos 2t; -= -2 sin2t 

dt 

dw 2u 2v 
c)  ( i )  -= -+ (-2 sin t ) -(2cos t )= -cos t s in t  +s in tcos t  = 0

dt u2  v2 
+ 

u2 + v2 
dw

(ii) w = ln(u2+ v 2 )= ln(4 cos2 t + 4 sin2 t )= In 4; -= 0.  
dt 

2E-2 a)  The  value l o t = 0 corresponds t o  the point (x(O), y (0) )  = (1,O)= P. 
dw z/pdtlo aw dx 

+ zlpdtloaw dy -dt = = - 2 s i n t + 3 c o s t

dw aw dx aw dy
b )  -=--+--=y(-s in t )+x(cos t )=-s in2t+cos2t=cos2t .

dt d x d t  d y d t  

dw 7r 7r n7r-= 0 when 2t = -+ n7r, therefore when t = - + -.
dt 2 4 2 

c)  t = 1 corresponds t o  the point ( x ( l ) ,  y ( l ) ,  z ( 1 ) )  = (1 ,1 ,1 ) .  
df dx dY dz - 1 . - - 1 . - + 2 . - = 1 . 1 - 1 . 2 + 2 . 3 = 5 .  
d t ) , =  d t l ,  d t / ,  d t l ,  

dw - dw du dw dv du dv
2E-3 a) Let w = uv ,  where u = u ( t ) ,  v = v ( t ) ;  ----+ - - = v - + u p .

dt au dt av dt dt dt 

d(uvw) du dv dw 
dt= vw-+ uw-+ uv-; e2t sin t + 2te2t sin t + te2t cost 

b, dt dt dt 

2E-4 The  values u = 1, v = 1 correspond t o  the point x = 0 ,  y = 1. At this point, 

2E-5 a)  w,  = w,x, + w,y, = w,  cos 8 + w, sin 8 
W Q= wxxe + w , y ~= w,  (-r sin 8 )  + w,(r cos 8 )  

Therefore, 
( w T ) ~+ ( w o / T ) ~  

= ( w , ) ~ ( c o s ~8 + sin2 8)  + 
+ 

( w , ) ~(sin2 8 + cos2 8 )  + 2wxwy cos 8 sin 8 - 2wxw, sin 8 cos 8 
= ( w ~ ) ~(wy)2.  
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b) The point r = a ,  8 = 7r/4 in polar coordinates corresponds in rectangular coordi- 
nates to the point x = 1, y = 1. Using the chain rule equations in part (a), 

w, = w, cos 8 + w, sin 8; ws = w, (-r sin 8) + w, (r cos 8) 

but evaluating all the partial derivatives at  the point, we get 
w, = 2 .  'JZ 2 - 1 . 1 d  2 = 'a; 2 W8 

+ 
= 2(-+)JZ-

T 
+a= -ja;

1 
(wT)' + -(wo)' = + 5 = 5; (w,)' + (wy)' = 2' + (-1)' = 5. 

r 

2E-6 wu = wx . 2 ~  + wy .2v; wV= w, . (-2v) + wy .2u,  by the chain rule. 
Therefore 

(WU)~ + (WV)~= [4u2 (w,) + 
+

4v2 (wy)2 + 4uvwxwy]+ [4v2 (w,) + 4u2 (wy)2 - 4uvwxwy] 
= 4(u2 v ~ ) [ ( w , ) ~+ (w,)~] .  

2E-7 BY the chain rule, fu = f,x, + fyyu, f v  = f,xv + fyy,; therefore 

( f  fv) = (fx fy) Yu x")Yv 

2E-8 a), Bv " the chain rule for functions of one variable, 
dw ,du 9 .  dw du 1
-= f l ( u ) .  = f l ( u ) .  -- -= f l (u ) .  -= f l ( u ) . ;;
dx x 2 '  dy dy

Therefore, 
dw dw Y + Y 

x - + y  -= f l (u ) .  -- f l ( u ) .  - = O .
dx dy x x 

2F. Maximum-minimum Problems 

2F-1 In these, denote by D = x2+y2 +z2 the square of the distance from the point (x, y, z) 
to the origin; then the point which minimizes D will also minimize the actual distance. 

1 1 
a) Since z2 = -, we get on substituting, D = x2 + y2 + -. with x and y 

XY xY 
independent; setting the partial derivatives equal to zero, we get 

1 1 1 1
D, = 2 x -  - = 0; D, =2y - -Z- = 0; or 2x2 = -, 2y2 = -

x2y Y X  XY XY ' 

1
Solving, we see first that x2 = -= y2, from which y = f x. 

~ X Y  

I f y = ~ , t h e n x ~ = ~ a n d x = y = 2 - ~ / ~ , a n d s o z = 2 ~ / ~ ;i f y = - x , t h e n ~ ~ = - ~  1 

and there are no solutions. Thus the unique point is (1/2114, 1/2114, 2114). 

b) Using the relation x2 = 1+ yz to eliminate x, we have D = 1+yz + y2+ z2, with 
y and z independent; setting the partial derivatives equal to zero, we get 

Dy = 2 y + z = O ,  D Z = 2 z + y = O ;  

solving, these equations only have the solution y = z = 0; therefore x = f 1, and there are 
two points: ( f  l,O, 0), both at distance 1from the origin. 
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2F-2 Letting x be the length of the ends, y the length of the sides, and z the height, we 
have 

total area of cardboard A = 3xy + 4x2 + 2yz, volume V = xyz = 1. 
Eliminating z to make the remaining variables independent, and equating the partials to 
zero, we get 

4 2 2 4
A = ~ x Y + - + - ;  A Z = 3 y - - = O ,  A , = ~ x - - = 0 .  

Y X x2 y2 
From these last two equations, we get 

therefore the proportions of the most economical box are x : y : z = 1 : 2 : :. 

2F-5 The cost is C = xy + xz + 4yz + 4x2, where the successive terms represent in turn 
the bottom, back, two sides, and front; i.e., the problem is: 

minimize: C = xy + 5x2 + 4yz, with the constraint: xyz = V = 2.5 

Substituting z = V/xy into C, we get 

We set the two partial derivatives equal to zero and solving the resulting equations simulta- 
16V

neously, by eliminating y; we get x3 = -=8 ,  (using V = 5 / 2 ) ,  so x = 2 ,  y = 52 '  z = $.
5 

2G. Least-squares Interpolation 

2G-1 Find y = mx + b that best fits (1, I ) ,  (2,3), (3,2) . 

D = ( m +  b - (2m+ b-3)2+ (3m+ b-2)2 
d D  
- = 2(m + b - 1) + 4(2m + b - 3) + 6(3m + b - 2) = 2(14m + 6b - 13)
dm 

d D  d D  14m + 6b = 13
Thus the equations -= 0 and -= 0 are whose solution is 

dm db 6 m + 3 b = 6  ' 
m = 3, b = 1, and the line is y = $x + 1 . 

2G-4 D = C i ( a  + bxi + cyi - ~ i ) ~ .The equations are 
dD/da = C 2(a + bxi + cyi - zi) = o 
dD/db = C2xi(a + bxi + cyi - zi) = o 
dD/dc = C2yi (a  + bxi + cyi - zi) = 0 

Cancel the 2's; the equations become (on the right, x = [xl,. . . ,x,], 1 = [ I , ... ,I] ,etc.) 
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2H. Max-min: 2nd Derivative Criterion; Boundary Curves 

2H-1 
a) f, = 0 : 22 - y = 3; f, = 0 : -x - 4y = 3 critical point: (1, -1) 

A = f,, = 2; B = f,, = -1; C = f,, = -4; AC -B2 = -9 < 0; saddle point 

b) f, = 0 : 6x + y = 1; f, = 0 : x + 2y = 2 critical point: (0, l )  
A = f,, = 6; B = f,, = 1; C = f,, = 2; AC -B2 = 11> 0; local minimum 

C) f, = 0 : 8x3 - y = 0; fy = 0 : 2y - x = 0; eliminating y, we get 

16x3 - x = 0, or x(16x2 - 1) = 0 + x = 0, x = a, x = -a, giving the critical points 

(O,O), ( i ,  i ) ,  ( - i ,  -:I. 

Since f,, = 24x2, f,, = -1, f,, = 2, we get for the three points respectively: 

(0,O) : A = -1 (saddle); ( i ,  i): A = 4 (minimum); (-14 ,  -1 )  8
 : A = 4 (minimum) 

d) f , = O :  3x2-3y=O;  f y = O :  -3x+3y2=0.Eliminatingygives 

-x + x4 = 0, or x(x3 - 1) = 0 + x = 0, y = 0 or x = 1, y = 1. 

Since f,, = 6x, f,, = -3, fyy  = 6y, we get for the two critical points respectively: 

(0,O) : AC -B2 = -9 (saddle); (1 , l )  : AC -B2 = 27 (minimum) 

e) f, = 0 : 3x2(y3+ 1) = 0; f y  = 0 : 3y2(x3+ 1) = 0; solving simultaneously, 
we get from the first equation that either x = 0 or y = -1; finding in each case the other 
coordinate then leads to the two critical points (0,O) and (-1, -1). 

Since f,, = 6x(y3 + I) ,  f,, = 3x2 .3y2, f,, = 6y(x3 + 1) , we have 

(-1, -1) : AC -B2 = -9 (saddle); (0,O) : AC - B2 = 0, test fails. 

(By studying the behavior of f (x, y) on the lines y = mx, for different values of m, it is 
possible to see that also (0,O) is a saddle point.) 

2H-3 The region R has no critical points; namely, the equations f, = 0 and f y  = 0 are 

but this point is not in R. We therefore investigate the diagonal boundary of R ,  using the 
parametrization x = t, y = -t. Restricted to this line, f (x, y) becomes a function of t alone, 
which we denote by g(t), and we look for its maxima and minima. 

g(t) = f( t , - t )  = 2t2 -4t  - 1; g'(t) = 4t -2,  which is 0 a t  t = 112. 

This point is evidently a minimum for g(t); there is no maximum: g(t) tends to co.Therefore 
for f (x, y) on R, the minimum occurs at  the point (112, -1/2), and there is no maximum; 
f (x, y) tends to infinity in different directions in R.  
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2H-4 We have f, = y - 1, f y  = x - 1, so the only critical point is at  (1 , l ) .  

a) On the two sides of the boundary, the function f (x, y) becomes respectively 

Since the function is linear and decreasing on both sides, it has no minimum points (infor-
mally, the minimum is -m). Since f (1 , l )  = 1 and f (x ,x)  = x2 - 22 + 2 + m as x + m ,  
the maximum of f on the first quadrant is m ,  so that (1 , l )  must be a saddle point. 

b) Continuing the reasoning of (a) to find the maximum and minimum points of f (x, y) 
on the boundary, on the other two sides of the boundary square, the function f (x,y) becomes 

Since f (x, y) is thus increasing or decreasing on each of the four sides, the 
maximum and minimum points on the boundary square R can only occur 2-Y • Y 

at  the four corner points; evaluating f (x,y) at  these four points, we find 

As in (a), since f (1 , l )  = 1,the critical point must be a saddle point; therefore, 
maximum points of f on R: (0,O) and (2,2); minimum points: (2,O) and (0,2). 

c) We have f,, = 0, f,, = 1, fyy= 0 for all x and y; therefore A C - B2 = -1 < 0, SO 

(1 , l )  is a saddle point, by the 2nd-derivative criterion. 

2H-5 Since f (x,y) is linear, it will not have critical points: namely, for all x and y we 
have f, = 1, f y  = &. Therefore any maxima or minima must occur on the boundary 
circle. 

We parametrize the circle by x = cose, y = sine; restricted to this boundary circle, 
f (x,y) becomes a function of 0 alone which we call g(0): 

Proceeding in the usual way to find the maxima and minima of g(B), we get 

7r 47r
It follows that the two critical points of g(0) are 0 = - and -; evaluating g a t  these two 

3 3 
points, we get g(n/3) = 4 (the maximum), and g(47r/3) = 0 (the minimum). 

Thus the maximum off  (x,y) in the circular disc R is at  (112, &/2), while the minimum 
is at  (-112, - 4 1 2 ) .  

2H-6 a) Since z = 4 - x - y, the problem is to find on R the maximum O 

and minimum of the total area m4 
f(x,  y) = xy + i ( 4  - x -Y ) ~  XI 

where R is the triangle given byR : 05 x, 0 5 y, x + y 5 4. Y z/ 2 

TOfind the critical points of f (x,y), the equations f, = 0and f, = 0 are respectively 

which imply first that x = y, and from this, x- $(4-22); the unique solution is x = 1, y = 1. 
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The region R is a triangle, on whose sides f (x, y) takes respectively the values 

bottom: y = 0; f = i ( 4  - 2)'; left side: x = 0; f = a(4 - y)2; 
diagonal y = 4 - x; f = x(4 - x). 'h 

On the bottom and side, f is decreasing; on the diagonal, f has a maximum a t  (4-

x = 2, y = 2. Therefore we need to examine the three corner points and (2,2) 
E$y-x)

as candidates for maximum and minimum points, as well as the critical point 
(1, I) .  We find 

I t  follows that the critical point is just a saddle point; to  get the maximum total area 4, 
make x = y = 0, z = 4, or x = y = 2, z = 0, either of which gives a point "rectangle" and a 
square of side 2; for the minimum total area 0, take for example x = 0, y = 4, z = 0, which 
gives a "rectangle" of length 4 with zero area, and a point square. 

b) We have f,, = 5, f,, = i, f,, = 3 for all x and y; therefore AC -B2 = -2 < 0, SO 

(1 , l )  is a saddle point, by the 2nd-derivative criterion. 

2H-7 a) f ,  = 42 - 2y - 2, f ,  = -22 + 2y; setting these = 0 and solving 
simultaneously, we get x = 1, y = 1,which is therefore the only critical point. 

On the four sides of the boundary rectangle R,  the function f (x, y) becomes: 
on y = -1 : f (x, y) = 2x2 + 1; on y = 2 : f (x, y) = 2x2 - 6x + 4 - 1 
on x = 0 :  f(x,y)  = y2; o n x = 2 :  f ( x , y ) = y 2 - 4 y + 4  2x2+ 1 

By one-variable calculus, f (x, y) is increasing on the bottom and decresing on the right side; 
on the left side it has a minimum at  (0, O), and on the top a minimum at  (z ,  2). Thus the 
maximum and minimum points on the boundary rectangle R can only occur a t  the four 
corner points, or at  (0,O) or (z ,  2). At these we find: 

At the critical point f (1, l )  = -1; comparing with the above, it is a minimum; therefore, 
maximum point of f (x, y) on R: (2, -1) minimum point of f (x, y) on R: (1, l )  

b) We have f,, = 4, f,, = -2, f,, = 2 for all x and y; therefore AC -B2 = 4 > 0 and 
A = 4 > 0, so (1, l )  is a minimum point, by the 2nd-derivative criterion. 

21. Lagrange Multipliers 

21-1 Letting P : (x, y, z) be the point, in both problems we want to maximize V = xyz, 
subject to a constraint f (x, y, z) = c. The Lagrange equations for this, in vector form, are 

a) Here f = c is x + 2y + 32 = 18; equating components, the Lagrange equations become 

To solve these symmetrically, multiply the left sides respectively by x, y, and z to make 
them equal; this gives 

Xx = 2Xy = 3Xz, or x = 2y = 32 = 6, since the sum is 18. 
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We get therefore as the answer x = 6, y = 3, z = 2. This is a maximum point, since if 
P lies on the triangular boundary of the region in the first octant over which it varies, the 
volume of the box is zero. 

b) Here f = c is x2 + 2y2 + 4z2 = 12; equating components, the Lagrange equations 
become 

yz = A. 22, xz = A .4y, xy = A. 82; x2 + 2y2+ 4z2 = 12. 

To solve these symmetrically, multiply the left sides respectively by x, y, and z to make 
them equal; this gives 

A .  2x2 = A. 4y2 = A. 8z2, or x2 = 2y2 = 4z2 = 4, since the sum is 12. 

We get therefore as the answer x = 2, y = fi, z = 1. This is a maximum point, since 
if P lies on the boundary of the region in the first octant over which it varies (118 of the 
ellipsoid), the volume of the box is zero. 

21-2 Since we want to minimize x2 +y2 +z2, subject to the constraint x3y2z= 6&, the 
Lagrange multiplier equations are 

To solve them symmetrically, multiply the first three equations respectively by x, y, and z, 
then divide them through respectively by 3, 2, and 1; this makes the right sides equal, so 
that, after canceling 2 from every numerator, we get 

Substituting into x3y2z = 6&, we get 3&z3 .2z2. z = 6&, which gives as the answer, 
x = & ,  y = f i ,  z = 1 .  

This is clearly a minimum, since if P is near one of the coordinate planes, one of the 
variables is close to zero and therefore one of the others must be large, since x3y2z = 6&; 
thus P will be far from the origin. 

21-3 Referring to the solution of 2F-2, we let x be the length of the ends, y the length of 
the sides, and z the height, and get 

total area of cardboard A = 3xy +4x2 + 2yz, volume V = xyz = 1. 

The Lagrange multiplier equations VA = A. V(xyz); xyz = 1, then become 

To solve these equations for x, y, z, A, treat them symmetrically. Divide the first equation 
through by yz, and treat the next two equations analogously, to get 

which by subtracting the equations in pairs leads to 3/z = 4/y = 212; setting these all equal 
to k, we get x = 2/k, y = 4/k, z = 3/k, which shows the proportions using least cardboard 
a r e x : y : z = 2 : 4 : 3 .  

To find the actual values of x, y, and z, we set l / k  = m; then substituting into xyz = 1 
gives (2m) (4m) (3m) = 1, from which m3 = 1/24, m = 112 .3lI3, giving finally 

1 2 3 x = - y = -
3113 ' 3113' z = p2 .3113 ' 
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21-4 The equations for the cost C and the volume V are xy+4yz+6xz = C and xyz = V. 
The Lagrange multiplier equations for the two problems are 

b) y + 6z = p yz, x + 4z = p xz, 4y + 62 = p xy; xyz = 24 

The first three equations are the same in both cases, since we can set p = 1/X.  Solving the 
first three equations in (a) symmetrically, we multiply the equations through by x, y, and 
z respectively, which makes the left sides equal; since the right sides are therefore equal, we 
get after canceling the A, 

xy + 6xz = xy + 4yz = 4yz + 6xz, which implies xy = 4yz = 6xz. 

a) Since the sum of the three equal products is 72, by hypothesis, we get 

from the first two we get x = 4z, and from the first and third we get y = 6z, which lead 
to the solution x = 4, y = 6, z = 1. 

b) Dividing xy = 4yz = 6xz by xyz leads after cross-multiplication to x = 4z, y = 6z; 
since by hypothesis, xyz = 24, again this leads to the solution x = 4, y = 6, z = 1. 

25. Non-independent Variables 

25-1 a) ( )  means that x is the dependent variable; get rid of it by writing 
z 

w = (z - y)2 +Y2 +z2 = z + z2. This shows that ( )  = 0. 

+ (2)+ (2) --. Y25-2a) Differentiating z = x2 y2 w.r.t. y: 0 = 2x 2y; so = 
z 2 '  

By the chain rule, ( ) z = 2 x ( )  + 2 y = 2 x ( y )  +=2y = 0. 
z 

Differentiating z = x2 + 1 

(g)y 
y2 with respect to I: 1= 2x (g)y ;  so (g) = -. 

22'
Y 

By the chain rule, =2,(:) + 2 z = 1 + 2 z .
Y 

b) Using differentials, dw = 2xdx + 2ydy + 2zdz, dz = 2xdx + 2ydy; 
since the independent variables are y and z, we eliminate dx by substracting the second 
equation from the first, which gives dw = Ody + (1+ 2z) dz; 

therefore by D2, we get ($),= 0, (g)y=1.2,. 
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2J-3 a) To calculate , we see that y is the dependent variable; solving for it, we 

zt 
get y = -; using the chain rule, (2)  - z2 = X  3 z  - - z ~ = x ~ z - z ~ ,

x x 
5 7 2  

b) Similarly, means that t is 

(z) 
the dependent variable; since t XY= -, we 

z 

have by the chain rule, ( )
," 

= -2zt - z2 = -2zt - z2 . 3= - ~ t .  
z2 

5,Y 5,Y 

2J-4 The differentials are calculated in equation (4). 

a) Since x, z, t are independent, we eliminate dy by solving the second equation for x dy, 
substituting this into the first equation, and grouping terms: 

dw = 2x2y dx + (x2z (2) 2 2-z2)dt+(x2t-2zt)dz, which shows by D2 that = x z - z .  

b) Since x, y, z are independent, we eliminate dt by solving the second equation for z dt, 
substituting this into the first equation, and grouping terms: 

dw = ( 3 - zy)dx ~ ~+ (x3~- zx)dy - zt dz, which shows by D2 that (2)x,y= -zt. 

v 
2J-5 a) If pv = nRT, then ( )  = sp+ ST (g)= Sp+ STe- 

nR ' 

b) Similarly, we have ( )  
V V 

nR
= ST + S p .  (g) = ST + Sp.-.v 

v v 

b) dw = (3u2 - v2)du - 2uvdv; du = x dy + y dx; dv = du + dx; 
for both derivatives, u and x are the independent variables, so we eliminate dv, getting 

dw = (3u2 - v2)du - 2uv(du + dx) = (3u2 - v2 - 2uv)du - 2uv dx, 

whose coefficients by D2 are 

2J-7 Since we need both derivatives for the gradient, we use differentials. 
df =2dx+dy-3dz at P; d z = 2 x d x + d y  = 2dx+dy  at P ;  

the independent variables are to be x and z, so we eliminate dy, getting 
df = 0 dx - 2 dz at the point (x, z) = (1,l). So Vg 

(2)
= (0, -2) at (1, l) .  

2J-8 To calculate , note that r and 6 are independent. Therefore, 

(2) aw + ( aw 
, " 

) . N O W , X = T C O S ~ ,  so = cos B . Therefore
= 0 
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2K. Partial Differential Equations 

2K-1 w = ?jln(x2 + y2). If (x,y) # (O,O), then 
a Y2 - x2 

w,, = -(w,) ax = 

a 
Wyy = -(wy) = - x2 - y2 

ay (x2+ ' 
Therefore w satisfies the two-dimensional Laplace equation, w,, + y2)2 

wyy = 0; we exclude the 
point (0,O) since In0 is not defined. 

a a 
2K-2 If w = (x2 + y2 + z2)n, then -(w,) ax = -(22 n(x2 + y2 + ax z2)"-l)

= 2n(x2 + y2 + z2)n-1 + 4x2n(n - 1)(x2+ y2 + z2)n-2 

We get wyy and w,, by symmetry; adding and combining, we get 

= 2n(2n + 1)(x2+ y2 + z2)"-l, which is identically zero if n = 0, or if n = -112. 

2K-3 a)  w = ax2+ bxy + cy2; w,, = 2a, wyy= 2c. 

Therefore all quadratic polynomials satisfying the Laplace equation are of the form 
ax2 + bxy - ay2 = a(x2 - y2) + bxy; 

i.e., linear combinations of the two polynomials f (x, y) = x2 - y2 and g(x, y) = xy . 

1
2K-4 The one-dimensional wave equation is w,, = -wtt. So

c2 
w = f (x + ct) + g(x - ct) =+ w,, = fl1(x + ct) + 

j wt = cfl(x + ct) + 
gl1(x- ct) 

-cgl(x - ct). 
j wtt = c2f"(x + ct) + ~ ~ g ~ ~ ( x- ct) = c2w,,, 

which shows w satisfies the wave equation. 

1
2K-5 The one-dimensional heat equation is w,, = -wt. So if w (x, t )  = sin kxeTt, then 

a2 
w,, = eTt .k2(-sinkx) = -k2w. 

wt = reTt sin kx = r W. 

1 
Therefore, we must have -k2w = - rw ,  or r = -a2k2. 

a2 

However, from the additional condition that w = 0 at x = 1,we must have 

sink eTt = 0 ; 

Therefore sink = 0, and so k = n r ,  where n is an integer. 

To see what happens to w as t -+ m ,  we note that since I sin kxl 5 1, 

I w I  = eTtlsinkxl 5 eTt. 

Now, if k # 0, then r = -a2k2 is negative and eTt -+ 0 as t -+ m ;  therefore Iwl -+ 0. 

Thus w will be a solution satisfying the given side conditions if k = n r ,  where n is a 
non-zero integer, and r = -a2k2. 




