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CV. Changing Variables 
in Multiple Integrals 

1. Changing variables. 

Double integrals in x, y coordinates which are taken over circular regions, or have inte- 
grands involving the combination x2 + y2, are often better done in polar coordinates: 

This involves introducing the new variables r and 19, together with the equations relating 
them to x,  y in both the forward and backward directions: 

Changing the integral to polar coordinates then requires three steps: 

A. Changing the integrand f (x, y) t o  g(r, 8), by using (2); 

B. Supplying the area element in the r,  I9 system: dA = r dr dB ; 

C. Using the region R to  determine the limits of integration in the r,  I9 system. 

In the same way, double integrals involving other types of regions or integrands can 
sometimes be simplified by changing the coordinate system from x, y to one better adapted 
to the region or integrand. Let's call the new coordinates u and v; then there will be 
equations introducing the new coordinates, going in both directions: 

(often one will only get or use the equations in one of these directions). To change the 
integral to u,v-coordinates, we then have to carry out the three steps A ,  B ,  C above. A 
first step is to picture the new coordinate system; for this we use the same idea as for polar 
coordinates, namely, we consider the grid formed by the level curves of the new coordinate 
functions: I \ ,u=Uo 

(4) u(x, y) = UO, v(x,y) = vo . 

Once we have this, algebraic and geometric intuition will usually handle 
steps A and C ,  but for B we will need a formula: it uses a determinant 
called the Jacobian, whose notation and definition are 

v=v2 

Using it, the formula for the area element in the u, v-system is 
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so the change of variable formula is 

where g(u, v) is obtained from f (x, y) by substitution, using the equations (3). 

We will derive the formula (5) for the new area element in the next section; for now let's 
check that it works for polar coordinates. 

Example 1. Verify (1) using the general formulas (5) and (6) 

Solution. Using (2), we calculate: 

so that dA = r dr dB, according to (5) and (6); note that we can omit the absolute value, 
since by convention, in integration problems we always assume r 2 0, as is implied already 
by the equations (2). 

We now work an example illustrating why the general formula is needed and how it is 
used; it illustrates step C also -putting in the new limits of integration. 

Example 2. Evaluate JJ,(. dx dy over the region R pictured.
2 )  

Solution. This would be a painful 
:

integral 
: 

to  work out in rectangular coordinates. 
But the region is bounded by the lines A I 

and the integrand also contains the combinations x -y and x +y. These powerfully suggest 
that the integral will be simplified by the change of variable (we give it also in the inverse 
direction, by solving the first pair of equations for x and y): 

We will also need the new area element; using (5) and (9) above. we get 

note that it is the second pair of equations in (9) that were used, not the ones introducing 
u and v. Thus the new area element is (this time we do need the absolute value sign in (6)) 

We now combine steps A and B to get the new double integral; substituting into the 
integrand by using the first pair of equations in (9), we get 
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In uv-coordinates, the boundaries (8) of the region are simply u = f1, v = f1, so the 
integral (12) becomes 

1 
dudu = dudu 

We have 

LA(&) 
v2 2 

inner integral = outer integral = 

2. The area element. 

In polar coordinates, we found the formula dA = r dr dB for the area element by 
drawing the grid curves r = ro and 6' = Bo for the r,6'-system, and determining (see 
the picture) the infinitesimal area of one of the little elements of the grid. 

For general u,v-coordinates, we do the same thing. The grid curves (4) divide up the 
plane into small regions AA bounded by these contour curves. If the contour curves are close 
together, they will be approximately parallel, so that the grid element will be approximately 
a small parallelogram, and 

Y
(13) AA E area of parallelogram PQRS = IPQ x PRI v=v 0 +Av 

In the uv-system, the points P ,  Q, R have the coordinates RGv=v0

U = U O + A U  
P : ( u o , v o ) ,  Q : ( u ~ + A u , v o ) ,  R : ( u o , v o + A v ) ;  

P u=uo 

to  use the cross-product however in (13), we need PQ and PR in i j - coordinates. 
Consider PQ first; we have 

(14) P Q  = A x i  + A y j  , 

where Ax and Ay are the changes in x and y as you hold v = vo and change uo to uo +Au. 
According to the definition of partial derivative, 

so that by (14), 

In the same way, since in moving from P to R we hold u fixed and increase vo by Av, 

We now use (13); since the vectors are in the xy-plane, P Q  x P R  has only a k -component, 
and we calculate from (15) and (16) that 



4 18.02 NOTES 

where we have first taken the transpose of the determinant (which doesn't change its value), 
and then factored the Au and Av out of the two columns. Finally, taking the absolute 
value, we get from (13) and (17), and the definition (5) of Jacobian, 

passing to the limit as Au, Av + 0 and dropping the subscript 0 (so that P becomes any 
point in the plane), we get the desired formula for the area element, 

3. Examples and comments; putting in limits. 

If we write the change of variable formula as 

(18) 
where 

it looks as if the essential equations we need are the inverse equations: 

rather than the direct equations we are usually given: 

If it is awkward to get (20) by solving (21) simultaneously for x and y in terms of u and v, 
sometimes one can avoid having to do this by using the following relation (whose proof is 
an application of the chain rule, and left for the Exercises): 

The right-hand Jacobian is easy to calculate if you know u(x, y) and v(x, y); then the left- 
hand one - the one needed in (19) -will be its reciprocal. Unfortunately, it will be in 
terms of x and y instead of u and v, so (20) still ought to be needed, but sometime 
gets lucky. The next example illustrates. 

Example 3. Evaluate dxdy, where R is the region pictured, having 
x 

as boundaries the curves x2 - y2 = 1, x2 - y2 = 4, y = 0, y = x/2 . 

Solution. Since the boundaries of the region are contour curves of x2 - y2 and y/x , 
and the integrand is ylx,  this suggests making the change of variable 
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We will try to get through without solving these backwards for x, y in terms of u, v. Since 
changing the integrand to the u, v variables will give no trouble, the question is whether we 
can get the Jacobian in terms of u and v easily. It all works out, using (22): 

according to (22). We use now (18), put in the limits, and evaluate; note that the answer is 
positive, as it should be, since the integrand is positive. 

Putting in the limits 

In the examples worked out so far, we had no trouble finding the limits of integration, 
since the region R was bounded by contour curves of u and v, which meant that the limits 
were constants. 

If the region is not bounded by contour curves, maybe you should use a different change of 
variables, but if this isn't possible, you'll have to figure out the uv-equations of the boundary 
curves. The two examples below illustrate. 

Example 4. Let u = x + y, v = x - y; change l1 lx dy dx to an iterated integral 

du dv. 

Solution. Using (19) and (22), we calculate -a(x' = -112, so the Jacobian factor 
~ [ U . V ). , 

in the area element will be 112. I 
To put in the new limits, we sketch the region of integration, a s  shown at  the 

right. The diagonal boundary is the contour curve v = 0; the horizontal and vertical 
boundaries are not contour curves -what are their uv-equations? There are two 
ways to answer this; the first is more widely applicable, but requires a separate 
calculation for each boundary curve. 

Method 1 Eliminate x and y from the three simultaneous equations u = u(x, y), v = v(x, y), 
and the xy-equation of the boundary curve. For the x-axis and x = 1, this gives 

Method 2 Solve for x and y in terms of u, v; then substitute x = x(u, v), y = y(u, v) into 
the xy-equation of the curve. 

Using this method, we get x = $(u+v), y = i (u-v);  substituting into the xy-equations: 
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To supply the limits for the integration order JJ du dv, we 

1. first hold v fixed, let u increase; this gives us the dashed lines shown; 
2. integrate with respect to u from the u-value where a dashed line enters 

R (namely, u = v), to the u-value where it leaves (namely, u = 2 - v). 
3. integrate with respect to v from the lowest v-values for which the 

dashed lines intersect the region 

1' 12-' 
R (namely, v = 0), to the highest such v- 

value (namely, v = 1). 
I I u=v 

Therefore the integral is du dv . 

(As a check, evaluate it, and confirm that its value is the area of R. Then try setting up 
the iterated integral in the order dv du; you'll have to break it into two parts.) 

Example 5 .  Using the change of coordinates u = x2 - y2,  v = y/x of Example 

3, supply limits and integrand for /L  , where R is the infinite region in the first 

quadrant under y = l / x  and to the right of x2 - y2 = 1. 

Solution. We have to change the integrand, supply the Jacobian factor, and put in the 
right limits. 

To change the integrand, we want to express x2 in terms of u and v; this suggests 
eliminating y from the u, v equations; we get 

1
From Example 3, we know that the Jacobian factor is since in the region R we 

2(1 - v2')' 
have by inspection 0 5 v < 1, the Jacobian factor is always pos;tive and we don't need the 
absolute value sign. So by (18) our integral becomes 

Finally, we have to put in the limits. The x-axis and the left-hand boundary curve 
x2 - Y2 = 1 are respectively the contour curves v = 0 and u = 1;our problem is the upper 
boundary curve xy = 1. To change this to u - v coordinates, we follow Method 1: 

The form of this upper limit suggests that we should integrate first with 
respect to u. Therefore we hold v fixed, and let u increase; this gives the 
dashed ray shown in the picture; we integrate from where it enters R at  

1 
u = 1 to where it leaves, at  u = - - v. 

v 
The rays we use are those intersecting R: they start from the lowest ray, corresponding 

to v = 0, and go to the ray v = a,  where a is the slope of OP. Thus our integral is 
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To complete the work, we should determine a explicitly. This can be done by solving 
xy = 1 and x2 - Y2 = 1 simultaneously to find the coordinates of P. A more elegant 
approach is to add y = ax (representing the line OP) to the list of equations, and solve all 
three simultaneously for the slope a. We substitute y = ax into the other two equations, 
and get 

ax2 = 1 -1 + + d5
a = 1 - a 2  + a = 

x2(1- a2) = 1 2 ' 
by the quadratic formula. 

4. Changing coordinates in triple integrals 

Here the coordinate change will involve three functions 

but the general principles remain the same. The new coordinates u, v, and w give a three- 
dimensional grid, made up of the three families of contour surfaces of u, v, and w. Limits 
are put in by the kind of reasoning we used for double integrals. What we still need is the 
formula for the new volume element dV. 

To get the volume of the little six-sided region AV of space bounded by three pairs of 
these contour surfaces, we note that nearby contour surfaces are approximately parallel, 
so that AV is approximately a parallelepiped, whose volume is (up to sign) the 3 x 3 
determinant whose rows are the vectors forming the three edges of AV meeting a t  a corner. 
These vectors are calculated as in section 2; after passing to the limit we get 

dV = la(x'y'Z) dudvdw ,
~ ( ' L L ,v, W) 

I 
where the key factor is the Jacobian 

As an example, you can verify that this gives the correct volume element for the change 
from rectangular to spherical coordinates: 

while this is a good exercise, it will make you realize why most people prefer to derive the 
volume element in spherical coordinates by geometric reasoning. 

Exercises: Section 3D 




