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4. Line Integrals in the Plane

4A. Plane Vector Fields

4A-1
a) All vectors in the field are identical; continuously differentiable everywhere.
b) The vector at P has its tail at P and head at the origin; field is cont. diff. everywhere.
¢) All vectors have unit length and point radially outwards; cont. diff. except at (0,0).
d) Vector at P has unit length, and the clockwise direction perpendicular to OP.
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4B. Line Integrals in the Plane
4B-1

1 371 2
a) On C;: y =0, dy = 0; therefore (2% —y) dz + 2z dy = / z?dx = z—] =-.
o -1 31, 3

1
On Cy: y=1-22, dy = —2zdxz; /(zz—y)dz+2:vdy:/ (22% — 1) dz — 42 da
Cq -1

1
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z3+z] =———2_——0.
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(—22° —1)dz = — [— 3 3
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b) C': use the parametrization £ = cost, y =sint; then dr = —sintdt, dy = costdt

0 0
/zyd:c—xzdyz/ —sinztcostdt—cosztcostdt=—/ costdt:-sint] =1
C w/2 w/2 /2

c) C=C1+Cy+C3; Criz=dz=0; Co: y=1—xz; Cs: y—dy—O
/ydz—zdy / 0+/ (1-2z)dz — z(—dz) / / dez = 1.
Cl C'3

d) C:xz=2cost, y=sint; dzr=—2sintdt /yd:v—/ —2sin’tdt = —
c 0

e) C: z=1t% y=13 dz=2tdt, dy=3t*dt
2

2 2
/6yd:v+:vdy=/ 6t3(2tdt)+t2(3t2dt):/ (15t4)dt:3t5} =331
C 1 1 1
1

1 2
) /(z+y)dz+zydy=/ 0+/ (:v+2)dz=z—+2z} :§_
C Cy [¢] 2 0 2

4B-2 a) The field F points radially outward, the unit tangent t to the circle is always
perpendicular to the radius; therefore F -t = 0 and f cF-dr= f cF-tds=0

b) The field F is always tangent to the circle of radius a, in the clockwise direction, and
of magnitude a. Therefore F = —at, so that [ F-dr= [ F-tds = — [,ads = —2mwa’®.
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4B-3 a) maximum if C is in the direction of the field: C = %
b) minimum if C is in the opposite direction to the field: C = — 1\—;5_]
¢) zero if C is perpendicular to the field: C =+ l\;i‘]

d) max = /2, min = —/2: by (a) and (b), for the max or min F and C have
respectively the same or opposite constant direction, so fc F.dr = t|F|-|C] = +/2.

4C. Gradient Fields and Exact Differentials

4C-1 a) F=Vf=3z%yi + (z® +3y?)j
b) (i) Using y as parameter, C; is: z = y?, y = y; thus dz = 2ydy, and

-1

1 1
/ F.dr = / 3%y 2ydy +[(¥*)? +3y%|dy = / (79 +3y2) dy = (" +¢°)] ., = 4.
C1 } ~1
b) (ii) Using y as parameter, Co is: z =1, y = y; thus dr =0, and

1
/ F-dr:/ A+3)dy=@+y")], =4
Cs —1
b) (iii) By the Fundamental Theorem of Calculus for line integrals,
/ Vf-dr = f(B) - f(4).
c

Here A = (1,-1) a.ndB=(1,1),sothat/ Vf-dr=(1+1)-(-1-1) =4.
c

4C-2 a) F = Vf = (ope™ + )i + (a%6™), .
b) (i) Using z as parameter, C is: z =z, y = 1/z, so dy = —dz/z?, and so

0
/ F.dr = / (e + ) dz + (z%e)(—dz/z?) = (2ex — ex)]? = —e.
c 1
b) (ii) Using the F.T.C. for line integrals, / F.-dr = f(1,1)— f(0,00) =0 —e = —e.
c

4C-3 a) F=Vf = (coszcosy)i — (sinzsiny)j.

b) Since / F . dr is path-independent, for any C connecting A : (zg,y0) to B : (z1,%1),
c
we have by the F.T.C. for line integrals,

F - dr = sinz; cosy; — sinzg cosyg
c
This difference on the right-hand side is maximized if sinz; cosy; is maximized, and
sin zg cosyo is minimized. Since |sinz cosy| = |sinz||cosy| < 1, the difference on the right
hand side has a maximum of 2, attained when sinz; cosy; = 1 and sinzg cosyo = —1.

(For example, a C running from (—/2,0) to (w/2,0) gives this maximum value.)
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4C-5 a) F is a gradient field only if M, = N, that is, if 2y =ay,soa = 2.
By inspection, the potential function is f(z,y) = zy?+22+¢; you can check that F = V.

b) The equation M, = N, becomes e*t¥(z+a) = ze* ¥ +e°¥, which = e**¥(z+1).
Therefore a = 1.

To find the potential function f(z,y), using Method 2 we have
fe=e'ef(z+1) = f(z,y) = e¥ze” + g(y).
Differentiating, and comparing the result with N, we find

[y = €¥ze® + g'(y) = ze®Y; therefore g'(y) = 0, so g(y) = c and f(z,y) = ze*t¥ +c.

4C-6 a) ydz — zdy is not exact, since My = 1 but N, = —1. (xpn)
b) y(2z + y) dz + z(2y + x) dy is exact, since My = 2z + 2y = N,. c,

Using Method 1 to find the potential function f(z,y), we calculate the
line integral over the standard broken line path shown, C = C, + Cs.

Cl X1

(z1,91)
f(xl,y1)=/F-dr:/ y(2z + y)dz + z(2y + z) dy.
c (0,0)

On ¢, wehaveyannddyzO,so/ F.-dr=0.
C1

On Cs, we have £ =z, and dz =0, so/

Y1
F.dr =/ 212y + z1) dz = 1% + 22y
Ca 0

Therefore, f(z,y) = 2%y + zy?; to get all possible functions, add +c .

4D. Green’s Theorem

4D-1 a) Evaluating the line integral first, we have C : = = cost, y = sin¢, so

27 2T . 27
2t
‘7{2ydz+xdy= (—2sin?t + cos®t) dt = (1—3sin2t)dt=t—3<£—Sln )} =—m.
C 0 0 2 4 0
For the double integral over the circular region R inside the C, we have
//(N,J - My)dA = // (1-2)dA=— areaof R = —.
R R C3
1
b) Evaluating the line integral, over the indicated path C = C; + Cy + Cs + Cy, c
2 1 0 0 4 R
‘7{ z?dz + 2’dy = / x2dx+/ 4dy+/ ’dx + / 0dy = 4,
c 0 0 2 1
since the first and third integrals cancel, and the fourth is 0. ©

For the double integral over the rectangle R,

2 1 2
// 2sz=/ / 2zdydz=x2] =4.
R 0 0 0
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¢) Evaluating the line integral over C = Cy + C3, we have

! P ol
C,: z=z, y=1% / :cyd:c+y2dy:/ x-xzdx+x4-2:cd:c:—+—] =—
Cl 0 4 3 0 12
0 2 ,1° 2
Cy:z=2,y=mum; / :cyd:c+y2dy=/(a:zd:c+a:2da:)=—:c3] = ——.
Cz 1 3 1 3
7 2 1
Theref d dy=— - =—-—.
erefore, ]i:cy T Ty ay 23 B
Evaluating the double integral over the interior R of C, we have
1 L
// —:z:dA:/ / —z dydz;
R 0 Jx2
= 3ot 11 1
aluating: I T - = —z% + 2% Ot:—x—+x—] —_— 4=
evaluating: Inner :cy]y:zz 4+ uter: ——= 7l 3+4 D

4D-2 By Green’s theorem, _7{ 4’y de + 2t dy = //(43:3 —42%)dA = 0.
c

This is true for every closed curve C in the plane, since M and N have continuous
derivatives for all z,y.

4D-3 We use the symmetric form for the integrand since the parametrization of the curve
does not favor z or y; this leads to the easiest calculation.

1 1 2m 3 2w
Area=— ]{ —ydzt+zrdy = - / 3sin t cos? t dt+3sin® t cos* tdt = = / sin® t cos? t dt
2 Jc 2 Jo 2 Jo

3/t sin4t\*™ 3x
g\ 2 8

Using sin’tcos®t = $(sin2)? = £ - 1(1 — cos4t), the above = = <— . 3

4D-4 By Green’s theorem, ]{ —yidr+23dy = // (32 + 3y?) dA > 0, since the integrand
c R

is always positive outside the origin.

4D-5 Let C be a square, and R its interior. Using Green’s theorem,

]{ zy’dr + (z%y + 22)dy = // (2zy + 2 — 2zy)dA = // 2dA = 2(area of R).
C R R

4E. Two-dimensional Flux
4E-1 The vector F is the velocity vector for a rotating disc; it is at each point tangent to
the circle centered at the origin and passing through that point.
a) Since F is tangent to the circle, F - n = 0 at every point on the circle, so the flux is 0.
b) F = zj at the point (z,0) on the line. So if zg > 0, the flux at zy has the same

magnitude as the flux at —zy but the opposite sign, so the net flux over the line is 0.

1

1

cJn=-j,soF-n=zj--j =-—z. Thus/F-nds:/ —:cd:c:—g.
0
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4E-2 All the vectors of F have length v/2 and point northeast. So the flux across a line
segment C of length 1 will be

a) maximal, if C points northwest;

b) minimal, if C' point southeast;

c) zero, if C points northeast or southwest;

d) —1, if C has the direction and magnitude of i or — j; the corresponding normal vectors
are then respectively —j and —1i, by convention, so that F-n= (i + j)-—j = —-1. or
(i+j)-—1i=-1.

e) respectively v/2 and —/2, since the angle 8 between F and n is respectively 0 and =,
so that respectively F -n = |F|cosf = £/2.

1
4E—3/Mdy—Nd:c:/:c%y—wydw:/ (t+1)%2tdt — (t + 1)t2 dt
c c 0

1 # 1 1 2 LD
=/ (t® + 32 +2t)dt = —~+t3+t2] =
0 4 0 o
1 C3
4E-4  Taking the curve C = C) + Cs + C5 + (4 as shown,
1 0
/:cdy—yd:c:/ 0+/ —d:c+/ dy+/ 0=-2 €
C Ci 0 1 Cy
4E-5 Since F and n both point radially outwards, F - n = |[F| = a™, at every point of the
circle C of radius a centered at the origin.
a) The flux across C is a™ - 27a = 2ra™ ™.
b) The flux will be independent of a if m = —1.
4F. Green’s Theorem in Normal Form
4F-1 a)bothare0 b)divF=2z+2y; curlF=0 ¢)divF=z+y; curlF=y—=2
4F-2 a) div F = (—wy)z + (wz)y =0; curl F = (wz),; — (—wy)y = 2w.
b) Since F is the velocity field of a fluid rotating with constant angular velocity (like
a rigid disc), there are no sources or sinks: fluid is not being added to or subtracted from
the flow at any point.
¢) A paddlewheel placed at the origin will clearly spin with the same angular velocity
w as the rotating fluid, so by (15), the curl should be 2w at the origin. It is less obvious
that the curl is 2w at all other points as well.
4F-3 The line integral for flux is / zdy — ydz; its value is 0 on any segment
c
of the z-axis since y = dy = 0; on the upper half of the unit semicircle (oriented
counterclockwise), F - n = 1, so the flux is the length of the semicircle: . -1
Letting R be the region inside C, //R div FdA = //R 2dA=2(x/2) =m. 1 G aw
4F-4 For the flux integral ?{ z’dy —zydz over C=C1+Cy+C3+Cy, 4 R G
c

1 0
we get for the four sides respectively / 0+ / dy + / —zdz + / 0= § 1
& 0 1 oy 2
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1 g1 1
For the double integral, // div FdA = // 3z dA = / / 3z dydr = §w2] = §
R R o Jo 2 ]y 2

4F-5 7= +y)Y2 = rp=1@2+yH) V2.2 = —:::; by symmetry, 7, = %

To calculate div F, we have M = r™z and N = r™y; therefore by the chain rule, and the
above values for r; and ry, we have

2,2

My =r"+nr" g Z =" 4+ nr" 222,  similarly (or by symmetry),

Ny=r"+nr"ly-= =" +nr"%%, 5o that

AN

div F = My + Ny = 2r™ + nr™" 2(2? + y2) =r™(2+n), which =0ifn = -2.
To calculate curl F, we have by the chain rule

N, =nr" 1. z. Y, My, = 1. Y -z, sothat curl F =N, — M, =0, for all n.
T T

4G. Simply-connected Regions

4G-1 Hypotheses: the region R is simply connected, F = Mi + Nj has continuous
derivatives in R, and curl F =0 in R.

Conclusion: F is a gradient field in B (or, M dz + N dy is an exact differential).
a) curl F = 2y — 2y = 0, and R is the whole zy-plane. Therefore F = Vf in the plane.
b) curl F = —ysinz — zsiny # 0, so the differential is not exact.

¢) curl F =0, but R is the exterior of the unit circle, which is not simply-connected;
criterion fails.

d) curl F =0, and R is the interior of the unit circle, which is simply-connected, so the
differential is exact.

e) curl F =0 and R is the first quadrant, which is simply-connected, so F is a gradient
field.

4G-2 a) f(z,y)=azy’+2z b) f(z,y) = 2232 + 24%/2

¢) Using Method 1, we take the origin as the starting point and use the straight line
to (x1,y1) as the path C. In polar coordinates, £; = r1cosfy, y; = r1sinf;; we use r as
the parameter, so the pathis C : x =rcosf,, y =rsiné,, 0 <r <r;. Then

zdr+ydy  [™ rcos?f +rsin®f

z1, = = d
Rl

fd r1
r
= ——'dT=—V1—T2 =—\/1'—T2+1.
/0 \/1—7'2 0 !

d
Therefore, % =d(—v1-r2).

Another approach: zdz+ydy = $d(r?); therefore ad =

(Think of 72 as a new variable u, and integrate.)
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. . 1
4G-3 By Example 3 in Notes V5, we know that F = El;:—y‘] =V (——).

(3,4) 1:|5 1 1
i V2 5

Therefore, / =—-=

(1,1) T
4G-4 By Green’s theorem f{ zydz +2%dy = // zdA.
c R

For any plane region of density 1, we have [/ deA = z-(area of R), where Z is the
z-component of its center of mass. Slnce our region is symmetric with respect to the y-axis,
its center of mass is on the y-axis, hence Z =0 and so [, zdA = 0.

4G-5

a) yes

b) no (a circle surrounding the line segment lies in R, but its interior does not)

c) yes (no finite curve could surround the entire positive z-axis)

d) no (the region does not consist of one connected piece)

e) yes if 8y < 2m; no if g > 2, since then R is the plane with (0,0) removed

f) no (a circle between the two boundary circles lies in R, but its interior does not)

g) yes
4G-6

a) continuously differentiable for z,y > 0; thus R is the first quadrant without the two
axes, which is simply-connected.

b) continuous differentiable if r < 1; thus R is the interior of the unit circle, and is
simply-connected.

¢) continuously differentiable if r > 1; thus R is the exterior of the unit circle, and is not
simply-connected.

d) continuously differentiable if r # 0; thus R is the plane with the origin removed, and
is not simply-connected.

e) continuously differentiable if r # 0; same as (d).

4H. Multiply-connected Regions
4H-1 a) 0; 0 b) 2;4r  ¢) —1; -2« d) -2; —4nx

4H-2 In each case, the winding number about each of the points is given, then the value
of the line integral of F around the curve.

a) (1,-1,1); 2—-v2++3

b) (-1,0,1); —2++/3
c) (- 1, , ), -2





