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4. Line Integrals in the Plane 

4A. Plane Vector Fields 

4A-1 
a) All vectors in the field are identical; continuously differentiable everywhere. 
b) The vector at  P has its tail a t  P and head at  the origin; field is cont. diff. everywhere. 
c) All vectors have unit length and point radially outwards; cont. diff. except at  (0,O). 
d) Vector at  P has unit length, and the clockwise direction perpendicular to OP.  

4B. Line Integrals in the Plane 

l 2 
a) On Cl: y = 0, dy = 0; therefore (x2 - y) dx + 2% dy = x2 dx = = -

3 -1 3 '  

b) C: use the parametrization x = cos t ,  y = sin t ;  then dx = -sin t dt, dy = cost dt 

c) 

L
C = C l + C 2 + C 3 ;  L1o+1 C 1 : x = d x = O ;  C 2 :  y = 1 - x ;  C 3 : y = d y = 0  

1

y d x - x d y  = ( 1 - x ) ~ x - x ( - d x ) +  LO= Jdldx = 1. 

d) C : x = 2 c o s t ,  y = s i n t ;  dx=-2s in td t  L y d x  = J d Z T - 2 ~ i ~ ~ t d t= - 2 ~  

e) 

L
C :  x = t 2 ,  y = t 3 ;  

1
d x = 2 t d t ,  d y = 3 t 2 d t  

+
2 

+ 12 2

6y dx x dy = 6t3(2t dt) t2(3t2 dt) = (15t4) dt = 3t5] = 3 .31. 
1 

4B-2 a) The field F points radially outward, the unit tangent t to the circle is always 
perpendicular to the radius; therefore F .t = 0 and JcF .dr = JcF . t ds = 0 

The field F is always tangent to the circle of radius a,  in the clockwise direction, and b) 
of magnitude a. Therefore F = -at,  so that JcF .dr = JcF . t ds = -Jc a d s  = -2aa2. 
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i + j
4B-3 a) maximum if C is in the direction of the field: C = -JZ 


i + j
b) minimum if C is in the opposite direction to the field: C = --

. . 4
i - j

c) zero if C is perpendicular to the field: C = f-JZ 

d) max = 4, min = -4 by (a) and (b), f ir  the max or min F and C have 

respectively the same or opposite constant direction, so Jc F . dr = f IF1 . ICI = f a .  

4C. Gradient Fields and Exact Differentials 

4C-1 a) F = Vf= 3x2y i + (x3 + 3y2)j 

b) (i) Using y as parameter, C1 is: x = Y2,  y = y; thus dx = 2y dy, and 

b) (ii) Using y as parameter, C2 is: x = 1, y = y; thus dx = 0, and 

b) (iii) By the Fundamental Theorem of Calculus for line integrals, 

Vf . dl- = f (B) - f (A). 
P 


4C-2 a) F = Vf = (xyexY + exY)i + (x2exy)j. 

b) (i) Using x as parameter, 

lo
C is: x = x, y = l /x ,  so dy = -dx/x2, and so 

0
F . dr = (e + e) dx + (x2e) (-dx/x2) = (2ex - ex)] = -e. 

b) (ii) Using the F.T.C. for line integrals, F .dr = f (1, l)  -f (0,co)= 0 -e = -e. 
Ic 


4C-3 a) F = Vf= (cosxcosy)i - (sinxsiny)j. 

b) Since / F . dr is path-independent, for any C connecting A : (xo, yo) to B : (xi, yi), 
J c 


we have by the F.T.C. for line 

b
integrals, 

F . dr = sin XI cos yl - sin xo cos yo 

This difference on the right-hand side is maximized if sinxl cos yl is maximized, and 
sin xo cos yo is minimized. Since I sin x cos yl = I sin X I  I cos yl 5 1,the difference on the right 
hand side has a maximum of 2, attained when sinxl cos yl = 1and sinxo cos yo = -1. 

(For example, a C running from ( - ~ / 2 , 0 )  to (7r/2,0) gives this maximum value.) 
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4C-5 a) F is a gradient field only if My = N,, that is, if 2y = ay, so a = 2. 

By inspection, the potential function is f (x,y) = xY2+ x2+c; YOU can check that F = Vf .  

b) The equation My = Nx becomes ex+Y(x+a) = xex+~+ex+Y,which = ex+Y(x+1). 
Therefore a = 1. 

To find the potential function f (x,y), using Method 2 we have 

fz = eYex(x+ 1) + f (x, y) = eYxex + g(y). 

Differentiating, and comparing the result with N ,  we find 

fy = eYxex + gl(y) = xeX+y;therefore gl(y) = 0, so g(y) = c and f (a,y) = x ex+Y+ c. 

4C-6 a) ydx - xdy is not exact, since My = 1but N ,  = -1. 

b) (2x + y) dx + x(2y + x) dy is exact, since My = 2x + 2y = N,. 

Using Method 1 to find the potential function f (x,y), we calculate the 
line integral over the standard broken line path shown, C = 9+ C2. 

On C1 we have y = 0 and dy = 0, so L F . dr = 0. 

On C2,we have x = xl  and dx = 0, so J c , ~ . d ~= l y1x1(2y+ x l ) d x = x l y :  +x?yl .  

Therefore, f (x,y) = x2y + xy2; to get all possible functions, add +c . 

4D. Green's Theorem 

4D-1a) Evaluating the line integral first, we have C : x = cost, y = sin t ,  so 

si;2t)]rh 2 y d x + x d y =  12" (-2sinZt+cos2t )d t=  ( 1 - 3 s i n t ) d t = t - 3  2 ( -- -s .  

For the double integral over the circular region R inside the C ,  we have 

JJ,(N. - M.) d~ = (1- 2) d~ = - area of R = -s. 
I C? 

b) Evaluating the line integral, over the indicated path C = C1 + C2 + C3 + C4, 

d R 
x 2 d x + x 2 d v =  / 2 ~ z d x +/ '4dy+ [Ox2dx+ /OOdy = 4, 

since the first and third integrals cancel, and the fourth is 0. 
I C, 1 

,2 

For the double integral over the rectangle R ,  
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c) Evaluating the line integral over C = C1 +C2, we have 

i + 2 7 2 -1Therefore, xy dx y dy = -- - = - .
12 3 12 

Evaluating the double integral over li:
the interior R of C,  we have 

-x dA = -x dydx; 

evaluating: Inner: -xy I --+- 1 1  1 
= -x2+x3; Outer: = - -+  - = --

y=xZ Y=x 
 :] 3 4 12. 

4D-2 By Green's theorem, 

This 
h 4x3y dx +x4 dy = JJ  (4x3 - 4x3) dA = 0.

is true for every closed curve C in the plane, since M and N have continuous 
derivatives for all x, y. 

4D-3 We use the symmetric form for the integrand since the parametrization of the curve 
does not favor x or y; this leads to the easiest calculation. 

3 t sin4t 2x 3Ir 
Using sin2t cos2t = (sin 2t)2 = . $(1- cos 4t), the above =s (Z-a)o  :-8 .  

4D-4 By Green's theorem, i-y3dx +x3dy = JS,(3x2+3y2) dA > 0, since the integrand 

is always positive outside the origin. 

4D-5 Let C be a square, and R its interior. Using Green's theorem, 

ixy2dx + (x2y+ 22) dy = JS, (2xy + 2 - 2xy) dA = JS, 2 dA = 2(area of R) 

4E. Two-dimensional Flux 

4E-1 The vector F is the velocity vector for a rotating disc; it is at  each point tangent to 
the circle centered at  the origin and passing through that point. 

a) Since F is tangent to the circle, F .n = 0 a t  every point on the circle, so the flux is 0. 

b) F = x j  at the point (x,O) on the line. So if xo > 0, the flux a t  xo has the same 
magnitude as the flux at -xo but the opposite sign, so the net flux over the line is 0. 
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4E-2 All the vectors of F have length fi and point northeast. So the flux across a line 
segment C of length 1will be 

a) maximal, if C points northwest; 
b) minimal, if C point southeast; 
c) zero, if C points northeast or southwest; 
d) -1, if C has the direction and magnitude of i or -j ; the corresponding normal vectors 

are then respectively -j and - i ,  by convention, so that F . n = ( i  + j )  . - j  = -1. or 
( i  + j ) . - i  = -1. 

e) respectively fi and -fi, since the angle 9 between F and n is respectively 0 and 7r, 

so that respectively F . n = IF1 cos 9 = ffi. 

4E-4 Taking the curve C = Cl + C2 + C3 + C4 as shown, 

~ ~ d y - ~ d ~ = ~ , O + ~ ' - d ~ + ~ ~ d y + ~ O = - 2 .  

4E-5 Since F and n both point radially outwards, F . n = IF1 = am, at  every point of the 
circle C of radius a centered at  the origin. 

a) The flux across C is am .27ra = 27ram+l. 
b) The flux will be independent of a if m = -1. 

4F. Green's Theorem in Normal Form 

4F-1 a) both are 0 b) div F = 22 + 2y; curl F = 0 c) div F = x + y; curl F = y - x 

4F-2 a) div F = (-wy), + (wx), = 0; curl F = (wx), - (-wy), = 2w. 

b) Since F is the velocity field of a fluid rotating with constant angular velocity (like 
a rigid disc), there are no sources or sinks: fluid is not being added to or subtracted from 
the flow at  any point. 

c) A paddlewheel placed a t  the origin will clearly spin with the same angular velocity 
w as the rotating fluid, so by (15), the curl should be 2w at  the origin. It  is less obvious 
that the curl is 2w at  all other points as well. 

4F-3 The line integral for flux is x dy - y dx; its value is 0 on any segment 

of the x-axis since y = dy = 0; on the upper half of the unit semicircle (oriented 1 
f h  

-- \, 

counterclockwise), F . n = 1,so the flux is the length of the semicircle: 7r. - 1 1 

Letting R be the region inside C,  S L d i v  F d A  = S L 2 d A  = 2(7r/2) = 7r. 

4F-4 For the flux integral x2dy - xy dx over C = C1 + C2 + C3 + C4, 

we get for the four sides respectively 
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3 l 3
For the double integral, IS, 3xdydx = -x2]o = 5.

div F d A  = l L 3 ~ d A  = J,lJ,l 2

x Y
4 ~ - 5  = (x2 + y2)1/2 +. T, = $(x2 + Y2)-1/2 .2x  = -; by symmetry, ry = -. 

T T 

To calculate div F, we have M = rnx  and N = rny; therefore by the chain rule, and the 
above values for T, and T,, we have 

M, = Tn + x 
n ~ n - l x. - = Tn + nTn-2 x ; similarly (or by symmetry), 

Ny = rn + n r n - l y .  -yr = rn + nTn-2 y ,  2 so tha t
T 

div F = Mx + Ny = 2rn + nrnP2(x2+ Y2)= ~ ~ ( 2+ n),  which = 0 if n = -2. 

To calculate curl F ,  we have by the chain rule 

x Y
N, = nTn-' . - . y; My = nTn-l . - . x, SO that curl F = N, -My = 0, for all n .  

T T 

4G. Simply-connected Regions 

4G-1 Hypotheses: the region R is simply connected, F = M i  + N j  has continuous 
derivatives in R, and curl F = 0 in R. 

Conclusion: F is a gradient field in R (or, M dx + N dy is an exact differential). 

a) curl F = 2y - 2y = 0, and R is the whole xy-plane. Therefore F = Vf in the plane. 

b) curl F = -y sin x - x sin y # 0, so the differential is not exact. 

c) curl F = 0, but R is the exterior of the unit circle, which is not simply-connected; 
criterion fails. 

d) curl F = 0, and R is the interior of the unit circle, which is simply-connected, so the 
differential is exact. 

e) curl F = 0 and R is the first quadrant, which is simply-connected, so F is a gradient 
field. 

c) Using Method 1, we take the origin as the starting point and use the straight line 
to (XI,yl) as the path C. In polar coordinates, xl = TI cosO1, yl = TI sin el; we use T as 
the parameter, so the path is C : x = T cos el, y = T sin el, 0 5 T 5 1-1. Then 

Therefore, xdx +ydy  = d ( - d g ) .
dF-7 


Another approach: x dx+y dy = $d(r2); therefore xdx + ydy -- -- d(r2) = d ( - d s ) .
dC-7 2 d C - 7  

(Think of r2 as a new variable u, and integrate.) 
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x i  + y j  
4G-3 By Example 

hl,l) 
3 in Notes V5, we know that F = 

7.3 = V(-:). 

( 3 > 4 )  -:I 1 1 
Therefore, = fi= --A %.

4G-4 By Green's theorem ~ x y d x + x 2 d y =  

For any plane region of density 1, we have &xdA = %.(area of R),  where Z is the 
x-component of its center of mass. Since our region is symmetric with respect to the y-axis, 
its center of mass is on the y-axis, hence % = 0 and so J& x dA = 0. 

a) Yes 
b) no (a circle surrounding the line segment lies in R, but its interior does not) 
c) yes (no finite curve could surround the entire positive x-axis) 
d) no (the region does not consist of one connected piece) 
e) yes if 00 < 27r; no if 00 2 27r, since then R is the plane with (0,O) removed 
f) no (a circle between the two boundary circles lies in R, but its interior does not) 
g) Yes 

a) continuously differentiable for x, y > 0; thus R is the first quadrant without the two 
axes, which is simply-connected. 

b) continuous differentiable if r < 1; thus R is the interior of the unit circle, and is 
simply-connected. 

c) continuously differentiable if r > 1;thus R is the exterior of the unit circle, and is not 
simply-connected. 

d) continuously differentiable if r # 0; thus R is the plane with the origin removed, and 
is not simply-connected. 

e) continuously differentiable if T # 0; same as (d). 

4H. Multiply-connected Regions 

4H-2 In each case, the winding number about each of the points is given, then the value 
of the line integral of F around the curve. 




