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V4. Green's Theorem in Normal Form 

1. Green's theorem for flux. 

Let F = M i + N j represent a two-dimensional flow field, and C a simple 
closed curve, positively oriented, with interior R. 

According to the previous section, 

(1) flux of F across C = 

Notice that since the normal vector points outwards, away from R,  the flux is positive where 
the flow is out of R; flow into R counts as negative flux. 

We now apply Green's theorem to the line integral in (1); first we write the integral in 
standard form (dx first, then dy): 

This gives us Green's theorem in the normal form 

Mathematically this is the same theorem as the tangential form of Green's theorem -all 
we have done is to juggle the symbols M and N around, changing the sign of one of them. 
What is different is the physical interpretation. The left side represents the flux of F across 
the closed curve C. What does the right side represent? 

2. The two-dimensional divergence. 

Once again, let F = M i  + N j . We give a name to and a notation for 
the integrand of the double integral on the right of (2): 

d M  
div F = -+ -, d N

the divergence of F . 
dx dy 

Evidently div F is a scalar function of two variables. To get a t  its physical meaning, look 
at  the small rectangle pictured. If F is continuously differentiable, then div F is a continuous 
function, which is therefore approximately constant if the rectangle is small enough. We 
apply (2) to the rectangle; the double integral is approximated by a product, since the 
integrand is approximately constant: 

(4) flux across sides of rectangle z (E -+ ---Y) 
AA , AA = area of rectangle. 

Because of the importance of this approximate relation, we give a more direct derivation 
of it which doesn't use Green's theorem. The reasoning which follows is widely used in 
mathematical modeling of physical problems. 



2 V. VECTOR INTEGRAL CALCULUS 

Consider the small rectangle shown. We calculate an approximate value for the flux over 
each of its sides. 

flux across top = (F(x, y + Ay) . j )  Ax = N(x,  y + Ay) AX 

flux across bottom = (F(x, y) . -j )Ax = -N(x, y)Ax ; 
Y+AY adding these up, ...... 

total flux across 
.......


top and bottom = ( ~ ( x , y+ A ~ )-N(X,Y))AX = (g ~ y )AX. 

' By similar reasoning applied to the two sides, X x+Ax 

total flux across 
left and right sides i; (M(x + AX, y) - M ( x , ~ ) )  ~y = (2AX) AY . 

Adding up the flux over the four sides, we get (4) again: 

total flux over four d M  d N  
sides of the rectangle 

Continuing our search for a physical meaning for the divergence, if the total flux over the 
sides of the small rectangle is positive, this means there is a net flow o u t  of the rectangle. 
According to conservation of matter, the only way this can happen is if there is a source 
adding fluid directly to the rectangle. If the flow is taking place in a shallow tank of uniform 
depth, such a source can be visualized as someone standing over the tank, pouring fluid 
directly into the rectangle. Similarly, a net flow i n t o  the rectangle implies there is a s ink 
withdrawing fluid from the rectangle. It is best to think of such a sink as a "negative source". 
The net rate (positive or negative) at which fluid is added directly t o  the rectangle from 
above may be called the "source rate" for the rectangle. Thus, since matter is conserved, 

flux over sides of rectangle = source rate for the rectangle; 

combining this with (4) shows that 

d M  d N
source rate for the rectangle z 

We now divide by AA and pass to the limit, getting by definition 

the source rate at  (x, y) = ( + ) = div F 

The definition of the double integral as the limit 

/L
of a sum shows in the usual way now that 

source rate for R = div F d~ . 

These two relations (6) and (7) interpret the divergence physically, for a flow field, and they 
interpret also Green's theorem in the normal form: 

total flux across C = source rate for R 



V4. GREEN'S THEOREM IN NORMAL FORM 3 

Since Green's theorem is a mathematical theorem, one might think we have 
"proved" the law of conservation of matter. This is not so, since this law was 
needed for our interpretation of div F as the source rate at  (x, y). 

We give side-by-side the two forms of Green's theorem, first in the vector form, then in 
the differential form used when calculations are to be done. 

Tangential form Normal form 

work by F flux of F source rate 

around C across C for R 

3. An interpretation for curl F. 

The function curl F can be thought of as measuring the rotational tendency of the vector 
field: either as a force field or a velocity field, F will make a test object placed at  a point 
Po spin about a vertical axis (i.e., one in the k -direction), and the angular velocity of the 
spin will be proportional to (curl F)O. 

To see this for the velocity field v of a flowing 
liquid, place a paddle wheel of radius a so its center 
is at  (xo, yo), and its axis is vertical. We ask how 
rapidly the flow spins the wheel.) 

If the wheel had only one blade, the velocity of / ( x ~ ~ ~ d  6(+,yo)
the blade would be F . t ,  the component of the flow 
velocity vector F perpendicular to the blade, i.e., 
tangent to the circle of radius a traced out by the 

(s
I 

\ , , -
/

- -, 
blade. paddlewheel top view 

Since F . t is not constant along this circle, if the wheel had only one blade it would 
spin around at  an uneven rate. But if the wheel has many blades, this unevenness will be 
averaged out, and it will spin around at  approximately the average value of the tangential 
velocity F .t over the circle. Like the average value of any function defined along a curve, 
this average tangential velocity can be found by integrating F . t  over the circle, and dividing 
by the length of the circle. Thus, 

speed of blade = F - 1 
t ds = h F . dr 

-- & /L(curl  F)o dx dy, by Green's theorem, 

where (curl F)o  is the value of the function curl F at  (xo, y o )  The justification for the 
last approximation is that if the circle formed by the paddlewheel is small, then curl F 
has approximately the value (curl F)o  over the interior R of the circle, so that multiplying 
this constant value by the area nu2 of R should give approximately the value of the double 
integral. 



4 V. VECTOR INTEGRAL CALCULUS 

From (8) we get for the tangential speed of the paddlewheel: 

a
tangential speed z - (curl F)o .

2 

We can get rid of the a by using the angular velocity wo of the paddlewheel; since the 
tangential speed is awo , (9) becomes 

1 
wo z - (curl F)o  .

2 

As the radius of the paddlewheel gets smaller, the approximation becomes more exact, and 
passing to the limit as a + 0, we conclude that, for a two-dimensional velocity field F, 

(11) I curl F = twice the angular velocity of an infinitesimal paddlewheel a t  (x, y) . I 

The curl thus measures the "vorticity" of the fluid flow - its tendency to produce rotation. 

A consideration of curl F for a force field would be similar, interpreting F as exerting a 
torque on a spinnable object - a little dumbbell with two unit masses for a gravitational 
field, or with two unit positive charges for an electrostatic force field. 

Example 1. Calculate and interpret curl F for (a) x i +y j (b) w (- y i + x j) 

Solution. (a) curl F = 0; this makes sense since the field is radially outward and radially 
symmetric, there is no favored angular direction in which the paddlewheel could spin. 

(b) curl F = 2w at  every point. Since this field represents a fluid rotating about the origin 
with constant angular velocity w (see section Vl) ,  it is at  least clear that curl F should be 
2w at  the origin; it's not so clear that it should have this same value everywhere, but it is 
true. 

Exercises: Section 4F 




